These materials are organic semiconductors. Due to its hydrogen-bonding motifs and electron-rich properties, this carbon material is considered a potential candidate for material applications in carbon supplementation.[1]
Beta carbon nitride - a solid with a formula β-C3N4, which is predicted to be harder than diamond.
Azafullerenes are a class of heterofullerenes in which the element substituting for carbon is nitrogen.[6] Examples include (C59N)2 (biazafullerenyl),[7]C58N2 (diaza[60]fullerene), C57N3 (triaza[60]fullerene) and C48N12.
Cyanofullerenes
Cyanofullerenes are a class of modified fullerenes in which cyano- groups are attached to a fullerene skeleton. These have the formula C60(CN)2n, where n takes the values 1 to 9.
2,2-diisocyanopropanedinitrile - C5N4 or (−C≡N+−)2C(−C≡N)2 also called dicyano(diisocyano)methane
hexacyanoethane - C8N6 or (N≡C−)3C−C(−C≡N)3
hexacyanocyclopropane - C9N6 or cyclo-C3(CN)6
hexacyanobutadiene[8] - C10N6 or (N≡C−)2C=C(−C≡N)−C(−C≡N)=C(−C≡N)2
Dicyanopolyynes
Dicyanopolyynes are composed of a chain of carbon atoms with alternating single and triple bonds, terminated by nitrogen atoms. Although not a polyyne, dicyanoacetylene (N≡C−C≡C−C≡N) fits within this series.
C6N2 or N≡C(−C≡C−)2C≡N, dicyanobutadiyne or dicyanodiacetylene
C8N2 or N≡C(−C≡C−)3C≡N, dicyanohexatriyne or dicyanotriacetylene
C10N2 or N≡C(−C≡C−)4C≡N, dicyanooxatetrayne or dicyanotetraacetylene
C12N2 or N≡C(−C≡C−)5C≡N, dicyanodecapentayne or dicyanopentaacetylene
C14N2 or N≡C(−C≡C−)6C≡N, dicyanododecahexayne or dicyanohexaacetylene
C16N2 or N≡C(−C≡C−)7C≡N, dicyanotetradecaheptayne or dicyanoheptaacetylene
C18N2 or N≡C(−C≡C−)8C≡N, dicyanohexadecaoctayne or dicyanooctaacetylene
C20N2 or N≡C(−C≡C−)9C≡N, dicyanooctadecanonayne or dicyanononaacetylene
C22N2 or N≡C(−C≡C−)10C≡N, dicyanoicosadecayne or dicyanodecaacetylene
^Vinodh, Rajangam; Atchudan, Raji; Yi, Moonsuk; Kim, Hee-Je (2022). "Synthesis and properties of carbon nitride materials". Nanostructured Carbon Nitrides for Sustainable Energy and Environmental Applications. pp. 1–18. doi:10.1016/B978-0-12-823961-2.00008-2. ISBN978-0-12-823961-2.
^Sato, T., Narazaki, A., Kawaguchi, Y., Niino, H. and Bucher, G. (2003), Dicyanocarbodiimide and Trinitreno-s-triazine Generated by Consecutive Photolysis of Triazido-s-triazine in a Low-Temperature Nitrogen Matrix†. Angewandte Chemie International Edition, 42: 5206-5209.doi:10.1002/anie.200351879
^I. Y. Kim, S. Kim, X. Jin, S. Premkumar, G. Chandra, N.-S. Lee, G. P. Mane, S.-J. Hwang, S. Umapathy, A. Vinu, Angew. Chem. Int. Ed. 2018, 57, 17135. doi:10.1002/anie.201811061
^Hummelen et al, "Isolation of the Heterofullerene C59N as Its Dimer (C59N)2", Science 269: 1554-1556 (1995). doi:10.1126/science.269.5230.1554
^O.W.Webster, Hexacyanobutadiene, J. Am. Chem. Soc. 86(14): 2898–2902 (1964)
^ abSesto et al, "Chemical Reduction of 2,4,6-Tricyano-1,3,5-triazine and 1,3,5-Tricyanobenzene. Formation of Novel 4,4',6,6'-Tetracyano-2,2'-bitriazine and Its Radical Anion", J. Org. Chem. 68: 3367-3379 (2003). doi:10.1021/JO025833H