The biosynthesis of cactus alkaloids starts from the amino acidtyrosine and proceeds initially via tyramine and dopamine. By introducing a third hydroxy group and methylation of all three hydroxy groups, mescaline is formed. A tetrahydroisoquinoline scaffold can also be constructed from the intermediates of mescaline biosynthesis by a ring closure, resulting in anhalamine and anhalonidine. Anhalonidine is the biosynthetic precursor of anhalonine, in which a benzodioxole unit is formed from a hydroxyl and a methoxy group. Further branching of the biosynthetic pathways occurs through the methylation of the amino group from dopamine. This pathway leads to pellotine and subsequently to lophophorin.[1]
Mescaline is a psychedelic and is responsible for the hallucinogenic properties of Lophophora williamsii (peyote). The other alkaloids predominantly exhibit much less pronounced pharmacological effects and may have anticonvulsant properties. Pellotine was briefly used as a sedative in the early 20th century.[1]
References
^ abcdChan, Camilla B.; Poulie, Christian B. M.; Wismann, Simon S.; Soelberg, Jens; Kristensen, Jesper L. (2021-08-27), "The Alkaloids from Lophophora diffusa and Other "False Peyotes"", Journal of Natural Products, vol. 84, no. 8, pp. 2398–2407, doi:10.1021/acs.jnatprod.1c00381
^Brossi, A.; Schenker, F.; Leimgruber, W. (January 1964), "Synthesen in der Isochinolinreihe Neue Synthesen der Kaktusalkaloide Anhalamin, Anhalidin, rac . Anhalonidin und rac . Pellotin", Helvetica Chimica Acta, vol. 47, no. 7, pp. 2089–2098, doi:10.1002/hlca.19640470752