CRELD2

Cysteine-rich with EGF-like domain protein 2 is a protein that in humans is encoded by the CRELD2 gene found on chromosome 22q13.[1][2] It is a known homolog of CRELD1.[3] CRELD2's identifying feature is a tryptophan-aspartic acid domain.[4] It is a multifunctional glycoprotein that is approximately 60 kilodaltons and can reside in the endoplasmic reticulum (ER) or Golgi apparatus and be secreted spontaneously.[3] It is implicated in numerous ER stress-related diseases including chronic liver disease, cardiovascular disease, kidney disease, and cancer.[5][6]

Structure

Structure of CRELD2

CRELD2 can present itself in a variety of isoforms with similar motifs but different functions.[7]. Common motifs include EGF/calcium binding EGF domains and furin cysteine-rich domains.[3] The C-terminal of this protein includes the following specific amino acid sequence necessary for retention and secretion: (R/H)EDL.[8] The N-terminal has multiple CXXC motifs which are vital for translocation and isomerase activity.[4] CpG islands are present in the functional promoter region upstream of CRELD2. In this functional promoter region, GC nucleotides are abundant and a TATA box is absent.[7] An ERSE (ER Stress Responsible Element) is also present in CRELD2 and is conserved in numerous species.[3]

Function

The mechanism of CRELD2 retention during normal conditions and CRELD2 secretion under ER stress conditions

The CXXC motif at the N-terminal of CRELD2 suggests that it plays a role in the quality control of ER proteins. At the C-terminal, the four amino acids (R/H)EDL modulate the secretion of CRELD2. CRELD2 can bind to KDEL receptors in the Golgi and be retrogradely transported to the ER.[9] The presence of ER Stress Responsible Elements implies a regulatory role of CRELD2 during ER stress.[10] CRELD2 may function to promote ER stress tolerance or assist in recovery from acute stress.[11] The CRELD family is also implicated in developmental events.[7]

Tissue expression

Throughout the life span of an individual, CRELD2 displays ubiquitous expression. Expression of CRELD2 is found in most, if not all, tissues including: skeletal muscle, heart, liver, kidney, and placenta.[12] The expression of CRELD2 differs in adult tissue and fetal tissue. In adult tissue, CRELD2 is mainly expressed in pancreatic tissue, stomach tissue, duodenal tissue, salivary gland tissue, thyroid gland tissue, appendix tissue, and tracheal tissue. Fetal expression of CRELD2 occurs primarily in the following tissues: lung, liver, thymus, spleen, and heart. Expression of CRELD2 can be induced by inducing ER stress via chemicals such as Tm, Tg, and BFA.

CRELD2 in diseases

Chronic liver disease

In adult mice, exposure to arsenic during gestation led to high levels of CRELD2 expression in the liver. Expression of CRELD2 in the livers of mice also increased following 24 hours of intraperitoneal Tm infusion. Furthermore, in older mice with a knockout for Grp78, alcohol resulted in an increase of methylation at CpG islands in genes involved in CRELD2 expression.[13] Based on these studies utilizing mice models, CRELD2 is implicated in maintenance of liver homeostasis.[11]

Chronic vascular diseases

CRELD2 has been highly implicated in chronic vascular diseases based on multiple studies. In cardiomyocytes of neonatal rats, administration of Tm led to increased levels of CRELD2 mRNA. When an ER-stress inhibitor, salubrinal, was administered, the observed effect was reversed.[14] In another study, the aortic zone exhibited elevated CRELD2 expression which confirmed the presence of a mutation in the 3’ untranslated region of FBN1 and associated ER stress response. Furthermore, aneurysmal samples from humans displayed high levels of CRELD2.[15]

Cartilage and bone metabolism

CRELD is implicated in the homeostasis of cartilage and bone development based on numerous examples. In a mutant Matn3 model of multiple epiphyseal dysplasia, CRELD2 was found to be expressed at the highest levels in chondrocytes.[16] In mouse models of ER-stress related growth plate diseases, CRELD2 expression was observed in hypertrophic zones. In addition, when ER stress was induced in cartilage treated with interleukin-1alpha, CRELD2 involvement was observed. Moreover, during osteogenic differentiation of mesenchymal stem cells mediated via bone morphogenic protein 9, CRELD2 displays high levels of up-regulation.[17][18][19][20][21]

Cancer

ER stress, and thus CRELD2, are associated with the development of numerous types of cancer and tumor progression. Tumor angiogenesis can be promoted by CRELD2 up-regulating MB114 cell invasion. Additionally, CRELD2 was implicated as target of androgen receptors in prostate cancer. In renal cell carcinoma patients, CRELD2 expression was correlated with a poor prognosis. Furthermore, the presence of the CRELD2 gene and expression of the CRELD2 protein was linked to decreased chances of disease-free survival in cases of hepatocellular carcinoma. Another example implication the role of CRELD2 in cancer is exhibited in breast cancer.[22] Tumor progression was promoted by high levels of CRELD2, while lack of adequate CRELD2 expression suppressed tumor growth.[23]

CRELD2 as a biomarker

Due to its association with ER stress, CRELD2 can be utilized as a biomarker in ER-stress related diseases. For example, prosthetic joint infection can be detected via the presence of CRELD2 in synovial fluid.[24] Also, in males with NASH, decreased serum CRELD2 concentration led to higher levels of disease progression. Lastly, CRELD2 in the urine can be used as a biomarker for ER-stress related kidney diseases.

References

  1. ^ Rupp PA, Fouad GT, Egelston CA, Reifsteck CA, Olson SB, Knosp WM, Glanville RW, Thornburg KL, Robinson SW, Maslen CL (Jul 2002). "Identification, genomic organization and mRNA expression of CRELD1, the founding member of a unique family of matricellular proteins". Gene. 293 (1–2): 47–57. doi:10.1016/S0378-1119(02)00696-0. PMID 12137942.
  2. ^ "Entrez Gene: CRELD2 cysteine-rich with EGF-like domains 2".
  3. ^ a b c d Oh-hashi, Kentaro; Koga, Hisashi; Ikeda, Shun; Shimada, Kiyo; Hirata, Yoko; Kiuchi, Kazutoshi (2009-09-25). "CRELD2 is a novel endoplasmic reticulum stress-inducible gene". Biochemical and Biophysical Research Communications. 387 (3): 504–510. doi:10.1016/j.bbrc.2009.07.047. ISSN 1090-2104. PMID 19615339.
  4. ^ a b Oh-hashi, Kentaro; Kunieda, Ryosuke; Hirata, Yoko; Kiuchi, Kazutoshi (2011-08-04). "Biosynthesis and secretion of mouse cysteine-rich with EGF-like domains 2". FEBS Letters. 585 (15): 2481–2487. Bibcode:2011FEBSL.585.2481O. doi:10.1016/j.febslet.2011.06.029. ISSN 1873-3468. PMID 21729698.
  5. ^ Ren, Jun; Bi, Yaguang; Sowers, James R.; Hetz, Claudio; Zhang, Yingmei (2021-02-22). "Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases". Nature Reviews. Cardiology. 18 (7): 499–521. doi:10.1038/s41569-021-00511-w. ISSN 1759-5010. PMID 33619348.
  6. ^ Kim, Yeawon; Park, Sun-Ji; Manson, Scott R.; Molina, Carlos Af; Kidd, Kendrah; Thiessen-Philbrook, Heather; Perry, Rebecca J.; Liapis, Helen; Kmoch, Stanislav; Parikh, Chirag R.; Bleyer, Anthony J.; Chen, Ying Maggie (2017-12-07). "Elevated urinary CRELD2 is associated with endoplasmic reticulum stress-mediated kidney disease". JCI Insight. 2 (23): e92896, 92896. doi:10.1172/jci.insight.92896. ISSN 2379-3708. PMC 5752286. PMID 29212948.
  7. ^ a b c Maslen, Cheryl L.; Babcock, Darcie; Redig, Jennifer K.; Kapeli, Katannya; Akkari, Yassmine M.; Olson, Susan B. (2006-11-01). "CRELD2: gene mapping, alternate splicing, and comparative genomic identification of the promoter region". Gene. 382: 111–120. doi:10.1016/j.gene.2006.06.016. ISSN 0378-1119. PMID 16919896.
  8. ^ Munro, S.; Pelham, H. R. (1987-03-13). "A C-terminal signal prevents secretion of luminal ER proteins". Cell. 48 (5): 899–907. doi:10.1016/0092-8674(87)90086-9. ISSN 0092-8674. PMID 3545499.
  9. ^ Newstead, Simon; Barr, Francis (2020-10-09). "Molecular basis for KDEL-mediated retrieval of escaped ER-resident proteins - SWEET talking the COPs". Journal of Cell Science. 133 (19): jcs250100. doi:10.1242/jcs.250100. ISSN 1477-9137. PMC 7561476. PMID 33037041.
  10. ^ Oh-Hashi, Kentaro; Fujimura, Keito; Norisada, Junpei; Hirata, Yoko (2018-08-15). "Expression analysis and functional characterization of the mouse cysteine-rich with EGF-like domains 2". Scientific Reports. 8 (1): 12236. Bibcode:2018NatSR...812236O. doi:10.1038/s41598-018-30362-4. ISSN 2045-2322. PMC 6093884. PMID 30111858.
  11. ^ a b Kern, Paul; Balzer, Nora R.; Blank, Nelli; Cygon, Cornelia; Wunderling, Klaus; Bender, Franziska; Frolov, Alex; Sowa, Jan-Peter; Bonaguro, Lorenzo; Ulas, Thomas; Homrich, Mirka; Kiermaier, Eva; Thiele, Christoph; Schultze, Joachim L.; Canbay, Ali (2021-09-22). "Creld2 function during unfolded protein response is essential for liver metabolism homeostasis". FASEB Journal. 35 (10): e21939. doi:10.1096/fj.202002713RR. ISSN 1530-6860. PMID 34549824.
  12. ^ Tang, Qin; Liu, Qinhui; Li, Yanping; Mo, Li; He, Jinhan (2023). "CRELD2, endoplasmic reticulum stress, and human diseases". Frontiers in Endocrinology. 14. doi:10.3389/fendo.2023.1117414. ISSN 1664-2392. PMC 10018036. PMID 36936176.
  13. ^ Takemoto, H.; Yoshimori, T.; Yamamoto, A.; Miyata, Y.; Yahara, I.; Inoue, K.; Tashiro, Y. (1992-07-01). "Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase". Archives of Biochemistry and Biophysics. 296 (1): 129–136. doi:10.1016/0003-9861(92)90554-a. ISSN 0003-9861. PMID 1318687.
  14. ^ Liu, Chun-Lei; Zhong, Wu; He, Yun-Yun; Li, Xin; Li, Song; He, Kun-Lun (2016-01-06). "Genome-wide analysis of tunicamycin-induced endoplasmic reticulum stress response and the protective effect of endoplasmic reticulum inhibitors in neonatal rat cardiomyocytes". Molecular and Cellular Biochemistry. 413 (1–2): 57–67. doi:10.1007/s11010-015-2639-0. ISSN 1573-4919. PMID 26738490.
  15. ^ Navas-Madroñal, Miquel; Rodriguez, Cristina; Kassan, Modar; Fité, Joan; Escudero, José R.; Cañes, Laia; Martínez-González, José; Camacho, Mercedes; Galán, María (2019-07-15). "Enhanced endoplasmic reticulum and mitochondrial stress in abdominal aortic aneurysm". Clinical Science. 133 (13): 1421–1438. doi:10.1042/CS20190399. hdl:10261/201516. ISSN 1470-8736. PMID 31239294.
  16. ^ Hartley, Claire L.; Edwards, Sarah; Mullan, Lorna; Bell, Peter A.; Fresquet, Maryline; Boot-Handford, Raymond P.; Briggs, Michael D. (2013-12-20). "Armet/Manf and Creld2 are components of a specialized ER stress response provoked by inappropriate formation of disulphide bonds: implications for genetic skeletal diseases". Human Molecular Genetics. 22 (25): 5262–5275. doi:10.1093/hmg/ddt383. ISSN 1460-2083. PMC 3842181. PMID 23956175.
  17. ^ Hughes, Alexandria; Oxford, Alexandra E.; Tawara, Ken; Jorcyk, Cheryl L.; Oxford, Julia Thom (2017-03-20). "Endoplasmic Reticulum Stress and Unfolded Protein Response in Cartilage Pathophysiology; Contributing Factors to Apoptosis and Osteoarthritis". International Journal of Molecular Sciences. 18 (3): 665. doi:10.3390/ijms18030665. ISSN 1422-0067. PMC 5372677. PMID 28335520.
  18. ^ Guo, Jiachao; Ren, Ranyue; Sun, Kai; He, Jinpeng; Shao, Jingfan (2021-02-21). "PERK signaling pathway in bone metabolism: Friend or foe?". Cell Proliferation. 54 (4): e13011. doi:10.1111/cpr.13011. ISSN 1365-2184. PMC 8016635. PMID 33615575.
  19. ^ Rellmann, Yvonne; Eidhof, Elco; Dreier, Rita (2020-12-08). "Review: ER stress-induced cell death in osteoarthritic cartilage". Cellular Signalling. 78: 109880. doi:10.1016/j.cellsig.2020.109880. ISSN 1873-3913. PMID 33307190.
  20. ^ Zhang, Jiye; Weng, Yaguang; Liu, Xing; Wang, Jinhua; Zhang, Wenwen; Kim, Stephanie H.; Zhang, Hongyu; Li, Ruidong; Kong, Yuhan; Chen, Xiang; Shui, Wei; Wang, Ning; Zhao, Chen; Wu, Ningning; He, Yunfeng (2013). "Endoplasmic reticulum (ER) stress inducible factor cysteine-rich with EGF-like domains 2 (Creld2) is an important mediator of BMP9-regulated osteogenic differentiation of mesenchymal stem cells". PLOS ONE. 8 (9): e73086. Bibcode:2013PLoSO...873086Z. doi:10.1371/journal.pone.0073086. ISSN 1932-6203. PMC 3760886. PMID 24019898.
  21. ^ Duxfield, Adam; Munkley, Jennifer; Briggs, Michael D.; Dennis, Ella P. (2022-08-16). "CRELD2 is a novel modulator of calcium release and calcineurin-NFAT signalling during osteoclast differentiation". Scientific Reports. 12 (1): 13884. Bibcode:2022NatSR..1213884D. doi:10.1038/s41598-022-17347-0. ISSN 2045-2322. PMC 9381524. PMID 35974042.
  22. ^ Boyle, Sarah Theresa; Poltavets, Valentina; Kular, Jasreen; Pyne, Natasha Theresa; Sandow, Jarrod John; Lewis, Alexander Charles; Murphy, Kendelle Joan; Kolesnikoff, Natasha; Moretti, Paul Andre Bartholomew; Tea, Melinda Nay; Tergaonkar, Vinay; Timpson, Paul; Pitson, Stuart Maxwell; Webb, Andrew Ian; Whitfield, Robert John (2020-05-25). "ROCK-mediated selective activation of PERK signalling causes fibroblast reprogramming and tumour progression through a CRELD2-dependent mechanism". Nature Cell Biology. 22 (7): 882–895. doi:10.1038/s41556-020-0523-y. ISSN 1476-4679. PMID 32451439.
  23. ^ Salvagno, Camilla; Mandula, Jessica K.; Rodriguez, Paulo C.; Cubillos-Ruiz, Juan R. (2022-07-08). "Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity". Trends in Cancer. 8 (11): 930–943. doi:10.1016/j.trecan.2022.06.006. ISSN 2405-8025. PMC 9588488. PMID 35817701.
  24. ^ Chen, M.-F.; Chang, C.-H.; Yang, L.-Y.; Hsieh, P.-H.; Shih, H.-N.; Ueng, S. W. N.; Chang, Y. (2019-05-03). "Synovial fluid interleukin-16, interleukin-18, and CRELD2 as novel biomarkers of prosthetic joint infections". Bone & Joint Research. 8 (4): 179–188. doi:10.1302/2046-3758.84.BJR-2018-0291.R1. ISSN 2046-3758. PMC 6498892. PMID 31069072.

Further reading