Byzantine fault

A Byzantine fault is a condition of a system, particularly a distributed computing system, where a fault occurs such that different symptoms are presented to different observers, including imperfect information on whether a system component has failed. The term takes its name from an allegory, the "Byzantine generals problem",[1] developed to describe a situation in which, to avoid catastrophic failure of a system, the system's actors must agree on a strategy, but some of these actors are unreliable in such a way as to cause other (good) actors to disagree on the strategy and they may be unaware of the disagreement.

A Byzantine fault is also known as a Byzantine generals problem, a Byzantine agreement problem, or a Byzantine failure.

Byzantine fault tolerance (BFT) is the resilience of a fault-tolerant computer system or similar system to such conditions.

Definition

A Byzantine fault is any fault presenting different symptoms to different observers.[2] A Byzantine failure is the loss of a system service due to a Byzantine fault in systems that require consensus among multiple components.[3]

If all generals attack in coordination, the battle is won (left). If two generals falsely declare that they intend to attack, but instead retreat, the battle is lost (right).

The Byzantine allegory considers a number of generals who are attacking a fortress. The generals must decide as a group whether to attack or retreat; some may prefer to attack, while others prefer to retreat. The important thing is that all generals agree on a common decision, for a halfhearted attack by a few generals would become a rout, and would be worse than either a coordinated attack or a coordinated retreat.

The problem is complicated by the presence of treacherous generals who may not only cast a vote for a suboptimal strategy; they may do so selectively. For instance, if nine generals are voting, four of whom support attacking while four others are in favor of retreat, the ninth general may send a vote of retreat to those generals in favor of retreat, and a vote of attack to the rest. Those who received a retreat vote from the ninth general will retreat, while the rest will attack (which may not go well for the attackers). The problem is complicated further by the generals being physically separated and having to send their votes via messengers who may fail to deliver votes or may forge false votes.

Without message signing, Byzantine fault tolerance can only be achieved if the total number of generals is greater than three times the number of disloyal (faulty) generals. There can be a default vote value given to missing messages. For example, missing messages can be given a "null" value. Further, if the agreement is that the null votes are in the majority, a pre-assigned default strategy can be used (e.g., retreat).[4]

The typical mapping of this allegory onto computer systems is that the computers are the generals and their digital communication system links are the messengers. Although the problem is formulated in the allegory as a decision-making and security problem, in electronics, it cannot be solved by cryptographic digital signatures alone, because failures such as incorrect voltages can propagate through the encryption process. Thus, a faulty message could be sent such that some recipients detect the message as faulty (bad signature), others see it is having a good signature, and a third group also sees a good signature but with different message contents than the second group.[2]

History

The problem of obtaining Byzantine consensus was conceived and formalized by Robert Shostak, who dubbed it the interactive consistency problem. This work was done in 1978 in the context of the NASA-sponsored SIFT[5] project in the Computer Science Lab at SRI International. SIFT (for Software Implemented Fault Tolerance) was the brainchild of John Wensley, and was based on the idea of using multiple general-purpose computers that would communicate through pairwise messaging in order to reach a consensus, even if some of the computers were faulty.

At the beginning of the project, it was not clear how many computers in total were needed to guarantee that a conspiracy of n faulty computers could not "thwart" the efforts of the correctly-operating ones to reach consensus. Shostak showed that a minimum of 3n+1 are needed, and devised a two-round 3n+1 messaging protocol that would work for n=1. His colleague Marshall Pease generalized the algorithm for any n > 0, proving that 3n+1 is both necessary and sufficient. These results, together with a later proof by Leslie Lamport of the sufficiency of 3n using digital signatures, were published in the seminal paper, Reaching Agreement in the Presence of Faults.[6] The authors were awarded the 2005 Edsger W. Dijkstra Prize for this paper.

To make the interactive consistency problem easier to understand, Lamport devised a colorful allegory in which a group of army generals formulate a plan for attacking a city. In its original version, the story cast the generals as commanders of the Albanian army. The name was changed, eventually settling on "Byzantine", at the suggestion of Jack Goldberg to future-proof any potential offense-giving.[7] This formulation of the problem, together with some additional results, were presented by the same authors in their 1982 paper, "The Byzantine Generals Problem".[4]

Mitigation

The objective of Byzantine fault tolerance is to be able to defend against failures of system components with or without symptoms that prevent other components of the system from reaching an agreement among themselves, where such an agreement is needed for the correct operation of the system.

The remaining operationally correct components of a Byzantine fault tolerant system will be able to continue providing the system's service as originally intended, assuming there are a sufficient number of accurately-operating components to maintain the service.

When considering failure propagation only via errors, Byzantine failures are considered the most general and most difficult class of failures among the failure modes. The so-called fail-stop failure mode occupies the simplest end of the spectrum. Whereas the fail-stop failure mode simply means that the only way to fail is a node crash, detected by other nodes, Byzantine failures imply no restrictions on what errors can be created, which means that a failed node can generate arbitrary data, including data that makes it appear like a functioning node to a subset of other nodes. Thus, Byzantine failures can confuse failure detection systems, which makes fault tolerance difficult. Despite the allegory, a Byzantine failure is not necessarily a security problem involving hostile human interference: it can arise purely from physical or software faults.

The terms fault and failure are used here according to the standard definitions[8] originally created by a joint committee on "Fundamental Concepts and Terminology" formed by the IEEE Computer Society's Technical Committee on Dependable Computing and Fault-Tolerance and IFIP Working Group 10.4 on Dependable Computing and Fault Tolerance.[9] See also dependability.

Byzantine fault tolerance is only concerned with broadcast consistency, that is, the property that when a component broadcasts a value to all the other components, they all receive exactly this same value, or in the case that the broadcaster is not consistent, the other components agree on a common value themselves. This kind of fault tolerance does not encompass the correctness of the value itself; for example, an adversarial component that deliberately sends an incorrect value, but sends that same value consistently to all components, will not be caught in the Byzantine fault tolerance scheme.

Solutions

Several early solutions were described by Lamport, Shostak, and Pease in 1982.[4] They began by noting that the Generals' Problem can be reduced to solving a "Commander and Lieutenants" problem where loyal Lieutenants must all act in unison and that their action must correspond to what the Commander ordered in the case that the Commander is loyal:

  • One solution considers scenarios in which messages may be forged, but which will be Byzantine-fault-tolerant as long as the number of disloyal generals is less than one third of the generals. The impossibility of dealing with one-third or more traitors ultimately reduces to proving that the one Commander and two Lieutenants problem cannot be solved, if the Commander is traitorous. To see this, suppose we have a traitorous Commander A, and two Lieutenants, B and C: when A tells B to attack and C to retreat, and B and C send messages to each other, forwarding A's message, neither B nor C can figure out who is the traitor, since it is not necessarily A—the other Lieutenant could have forged the message purportedly from A. It can be shown that if n is the number of generals in total, and t is the number of traitors in that n, then there are solutions to the problem only when n > 3t and the communication is synchronous (bounded delay).[10] The full set of BFT requirements are: For F number of Byzantine failures, there needs to be at least 3F+1 players (fault containment zones), 2F+1 independent communication paths, and F+1 rounds of communication. There can be hybrid fault models in which benign (non-Byzantine) faults as well as Byzantine faults may exist simultaneously. For each additional benign fault that must be tolerated, the above numbers need to be incremented by one. If the BFT rounds of communication don't exist, Byzantine failures can occur even with no faulty hardware.
  • A second solution requires unforgeable message signatures. For security-critical systems, digital signatures (in modern computer systems, this may be achieved, in practice, by using public-key cryptography) can provide Byzantine fault tolerance in the presence of an arbitrary number of traitorous generals. However, for safety-critical systems (where "security" addresses intelligent threats while "safety" addresses the inherent dangers of an activity or mission, i.e., faults due to natural phenomena), error detecting codes, such as CRCs, provide stronger coverage at a much lower cost. (Note that CRCs can provide guaranteed coverage for errors that cryptography cannot. If an encryption scheme could provide some guarantee of coverage for message errors, it would have a structure that would make it insecure.[11]) But neither digital signatures nor error detecting codes such as CRCs provide a known level of protection against Byzantine errors from natural causes. And more generally, security measures can weaken safety and vice versa. Thus, cryptographic digital signature methods are not a good choice for safety-critical systems, unless there is also a specific security threat as well.[12] While error detecting codes, such as CRCs, are better than cryptographic techniques, neither provide adequate coverage for active electronics in safety-critical systems. This is illustrated by the Schrödinger CRC scenario where a CRC-protected message with a single Byzantine faulty bit presents different data to different observers and each observer sees a valid CRC.[2][3]
  • Also presented is a variation on the first two solutions allowing Byzantine-fault-tolerant behavior in some situations where not all generals can communicate directly with each other.[1]

There are many systems that claim BFT without meeting the above minimum requirements (e.g., blockchain). Given that there is mathematical proof that this is impossible, these claims need to include a caveat that their definition of BFT strays from the original. That is, systems such as blockchain don't guarantee agreement, they only make disagreement expensive.

Several system architectures were designed c. 1980 that implemented Byzantine fault tolerance. These include: Draper's FTMP,[13] Honeywell's MMFCS,[14] and SRI's SIFT.[5]

In 1999, Miguel Castro and Barbara Liskov introduced the "Practical Byzantine Fault Tolerance" (PBFT) algorithm,[15] which provides high-performance Byzantine state machine replication, processing thousands of requests per second with sub-millisecond increases in latency.

After PBFT, several BFT protocols were introduced to improve its robustness and performance. For instance, Q/U,[16] HQ,[17] Zyzzyva,[18] and ABsTRACTs,[19] addressed the performance and cost issues; whereas other protocols, like Aardvark[20] and RBFT,[21] addressed its robustness issues. Furthermore, Adapt[22] tried to make use of existing BFT protocols, through switching between them in an adaptive way, to improve system robustness and performance as the underlying conditions change. Furthermore, BFT protocols were introduced that leverage trusted components to reduce the number of replicas, e.g., A2M-PBFT-EA[23] and MinBFT.[24]

Applications

Several examples of Byzantine failures that have occurred are given in two equivalent journal papers.[2][3] These and other examples are described on the NASA DASHlink web pages.[25]

Applications in computing

Byzantine fault tolerance mechanisms use components that repeat an incoming message (or just its signature, which can be reduced to just a single bit of information if self-checking pairs are used for nodes) to other recipients of that incoming message. All these mechanisms make the assumption that the act of repeating a message blocks the propagation of Byzantine symptoms. For systems that have a high degree of safety or security criticality, these assumptions must be proven to be true to an acceptable level of fault coverage. When providing proof through testing, one difficulty is creating a sufficiently wide range of signals with Byzantine symptoms.[26] Such testing will likely require specialized fault injectors.[27][28]

Military applications

Byzantine errors were observed infrequently and at irregular points during endurance testing for the newly constructed Virginia class submarines, at least through 2005 (when the issues were publicly reported).[29]

Cryptocurrency applications

The Bitcoin network works in parallel to generate a blockchain with proof-of-work allowing the system to overcome Byzantine failures and reach a coherent global view of the system's state.[30][31] Some proof of stake blockchains also use BFT algorithms.[32]

Blockchain Technology

Byzantine Fault Tolerance (BFT) is a crucial concept in blockchain technology, ensuring that a network can continue to function even when some nodes[33] (participants) fail or act maliciously. This tolerance is necessary because blockchains are decentralized systems with no central authority, making it essential to achieve consensus among nodes, even if some try to disrupt the process.

Applications and Examples of Byzantine Fault Tolerance in Blockchain

Safety Mechanisms: Different blockchains use various BFT-based consensus mechanisms like Practical Byzantine Fault Tolerance (PBFT), Tendermint, and Delegated Proof of Stake (DPoS) to handle Byzantine faults. These protocols ensure that the majority of honest nodes can agree on the next block in the chain, securing the network against attacks and preventing double-spending and other types of fraud. Practical examples of networks include Hyperledger Fabric, Cosmos and Klever in this sequence.

51% Attack Mitigation: While traditional blockchains like Bitcoin use Proof of Work (PoW), which is susceptible to a 51% attack, BFT-based systems are designed to tolerate up to one-third of faulty or malicious nodes without compromising the network's integrity.

Decentralized Trust: Byzantine Fault Tolerance underpins the trust model in decentralized networks. Instead of relying on a central authority, the network's security depends on the ability of honest nodes to outnumber and outmaneuver malicious ones.

Private and Permissioned Blockchains: BFT is especially important in private or permissioned blockchains, where a limited number of known participants need to reach a consensus quickly and securely. These networks often use BFT protocols to enhance performance and security.

Applications in aviation

Some aircraft systems, such as the Boeing 777 Aircraft Information Management System (via its ARINC 659 SAFEbus network), the Boeing 777 flight control system, and the Boeing 787 flight control systems, use Byzantine fault tolerance; because these are real-time systems, their Byzantine fault tolerance solutions must have very low latency. For example, SAFEbus can achieve Byzantine fault tolerance within the order of a microsecond of added latency.[34][35][36] The SpaceX Dragon considers Byzantine fault tolerance in its design.[37]

See also

References

  1. ^ a b Lamport, L.; Shostak, R.; Pease, M. (1982). "The Byzantine Generals Problem" (PDF). ACM Transactions on Programming Languages and Systems. 4 (3): 382–401. CiteSeerX 10.1.1.64.2312. doi:10.1145/357172.357176. S2CID 55899582. Archived (PDF) from the original on 13 June 2018.
  2. ^ a b c d Driscoll, K.; Hall, B.; Paulitsch, M.; Zumsteg, P.; Sivencrona, H. (2004). "The Real Byzantine Generals". The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576). pp. 6.D.4–61–11. doi:10.1109/DASC.2004.1390734. ISBN 978-0-7803-8539-9. S2CID 15549497.
  3. ^ a b c Driscoll, Kevin; Hall, Brendan; Sivencrona, Håkan; Zumsteg, Phil (2003). "Byzantine Fault Tolerance, from Theory to Reality". Computer Safety, Reliability, and Security. Lecture Notes in Computer Science. Vol. 2788. pp. 235–248. doi:10.1007/978-3-540-39878-3_19. ISBN 978-3-540-20126-7. ISSN 0302-9743. S2CID 12690337.
  4. ^ a b c Lamport, L.; Shostak, R.; Pease, M. (1982). "The Byzantine Generals Problem" (PDF). ACM Transactions on Programming Languages and Systems. 4 (3): 387–389. CiteSeerX 10.1.1.64.2312. doi:10.1145/357172.357176. S2CID 55899582. Archived from the original (PDF) on 7 February 2017.
  5. ^ a b "SIFT: design and analysis of a fault-tolerant computer for aircraft control". Microelectronics Reliability. 19 (3): 190. 1979. doi:10.1016/0026-2714(79)90211-7. ISSN 0026-2714.
  6. ^ Pease, Marshall; Shostak, Robert; Lamport, Leslie (April 1980). "Reaching Agreement in the Presence of Faults". Journal of the Association for Computing Machinery. 27 (2): 228–234. CiteSeerX 10.1.1.68.4044. doi:10.1145/322186.322188. S2CID 6429068.
  7. ^ Lamport, Leslie (2016-12-19). "The Byzantine Generals Problem". ACM Transactions on Programming Languages and Systems. SRI International. Retrieved 18 March 2019.
  8. ^ Avizienis, A.; Laprie, J.-C.; Randell, Brian; Landwehr, C. (2004). "Basic concepts and taxonomy of dependable and secure computing". IEEE Transactions on Dependable and Secure Computing. 1 (1): 11–33. doi:10.1109/TDSC.2004.2. hdl:1903/6459. ISSN 1545-5971. S2CID 215753451.
  9. ^ "Dependable Computing and Fault Tolerance". Archived from the original on 2015-04-02. Retrieved 2015-03-02.
  10. ^ Feldman, P.; Micali, S. (1997). "An optimal probabilistic protocol for synchronous Byzantine agreement" (PDF). SIAM J. Comput. 26 (4): 873–933. doi:10.1137/s0097539790187084. Archived (PDF) from the original on 2016-03-05. Retrieved 2012-06-14.
  11. ^ Koopman, Philip; Driscoll, Kevin; Hall, Brendan (March 2015). "Cyclic Redundancy Code and Checksum Algorithms to Ensure Critical Data Integrity" (PDF). Federal Aviation Administration. DOT/FAA/TC-14/49. Archived (PDF) from the original on 18 May 2015. Retrieved 9 May 2015.
  12. ^ Paulitsch, M.; Morris, J.; Hall, B.; Driscoll, K.; Latronico, E.; Koopman, P. (2005). "Coverage and the Use of Cyclic Redundancy Codes in Ultra-Dependable Systems". 2005 International Conference on Dependable Systems and Networks (DSN'05). pp. 346–355. doi:10.1109/DSN.2005.31. ISBN 978-0-7695-2282-1. S2CID 14096385.
  13. ^ Hopkins, Albert L.; Lala, Jaynarayan H.; Smith, T. Basil (1987). "The Evolution of Fault Tolerant Computing at the Charles Stark Draper Laboratory, 1955–85". The Evolution of Fault-Tolerant Computing. Dependable Computing and Fault-Tolerant Systems. Vol. 1. pp. 121–140. doi:10.1007/978-3-7091-8871-2_6. ISBN 978-3-7091-8873-6. ISSN 0932-5581.
  14. ^ Driscoll, Kevin; Papadopoulos, Gregory; Nelson, Scott; Hartmann, Gary; Ramohalli, Gautham (1984), Multi-Microprocessor Flight Control System (Technical Report), Wright-Patterson Air Force Base, OH: AFWAL/FIGL U.S. Air Force Systems Command, AFWAL-TR-84-3076
  15. ^ Castro, M.; Liskov, B. (2002). "Practical Byzantine Fault Tolerance and Proactive Recovery". ACM Transactions on Computer Systems. 20 (4). Association for Computing Machinery: 398–461. CiteSeerX 10.1.1.127.6130. doi:10.1145/571637.571640. S2CID 18793794.
  16. ^ Abd-El-Malek, M.; Ganger, G.; Goodson, G.; Reiter, M.; Wylie, J. (2005). "Fault-scalable Byzantine Fault-Tolerant Services". ACM SIGOPS Operating Systems Review. 39 (5). Association for Computing Machinery: 59. doi:10.1145/1095809.1095817.
  17. ^ Cowling, James; Myers, Daniel; Liskov, Barbara; Rodrigues, Rodrigo; Shrira, Liuba (2006). HQ Replication: A Hybrid Quorum Protocol for Byzantine Fault Tolerance. Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation. pp. 177–190. ISBN 1-931971-47-1.
  18. ^ Kotla, Ramakrishna; Alvisi, Lorenzo; Dahlin, Mike; Clement, Allen; Wong, Edmund (December 2009). "Zyzzyva: Speculative Byzantine Fault Tolerance". ACM Transactions on Computer Systems. 27 (4). Association for Computing Machinery: 1–39. doi:10.1145/1658357.1658358.
  19. ^ Guerraoui, Rachid; Kneževic, Nikola; Vukolic, Marko; Quéma, Vivien (2010). The Next 700 BFT Protocols. Proceedings of the 5th European conference on Computer systems. EuroSys. Archived from the original on 2011-10-02. Retrieved 2011-10-04.
  20. ^ Clement, A.; Wong, E.; Alvisi, L.; Dahlin, M.; Marchetti, M. (April 22–24, 2009). Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults (PDF). Symposium on Networked Systems Design and Implementation. USENIX. Archived (PDF) from the original on 2010-12-25. Retrieved 2010-02-17.
  21. ^ Aublin, P.-L.; Ben Mokhtar, S.; Quéma, V. (July 8–11, 2013). RBFT: Redundant Byzantine Fault Tolerance. 33rd IEEE International Conference on Distributed Computing Systems. International Conference on Distributed Computing Systems. Archived from the original on August 5, 2013.
  22. ^ Bahsoun, J. P.; Guerraoui, R.; Shoker, A. (2015-05-01). "Making BFT Protocols Really Adaptive". 2015 IEEE International Parallel and Distributed Processing Symposium. pp. 904–913. doi:10.1109/IPDPS.2015.21. ISBN 978-1-4799-8649-1. S2CID 16310807.
  23. ^ Chun, Byung-Gon; Maniatis, Petros; Shenker, Scott; Kubiatowicz, John (2007-01-01). "Attested append-only memory". Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles. SOSP '07. New York, NY, USA: ACM. pp. 189–204. doi:10.1145/1294261.1294280. ISBN 9781595935915. S2CID 6685352.
  24. ^ Veronese, G. S.; Correia, M.; Bessani, A. N.; Lung, L. C.; Verissimo, P. (2013-01-01). "Efficient Byzantine Fault-Tolerance". IEEE Transactions on Computers. 62 (1): 16–30. CiteSeerX 10.1.1.408.9972. doi:10.1109/TC.2011.221. ISSN 0018-9340. S2CID 8157723.
  25. ^ Driscoll, Kevin (2012-12-11). "Real System Failures". DASHlink. NASA. Archived from the original on 2015-04-02. Retrieved 2015-03-02.
  26. ^ Nanya, T.; Goosen, H.A. (1989). "The Byzantine hardware fault model". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 8 (11): 1226–1231. doi:10.1109/43.41508. ISSN 0278-0070.
  27. ^ Martins, Rolando; Gandhi, Rajeev; Narasimhan, Priya; Pertet, Soila; Casimiro, António; Kreutz, Diego; Veríssimo, Paulo (2013). "Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol". Middleware 2013. Lecture Notes in Computer Science. Vol. 8275. pp. 41–61. doi:10.1007/978-3-642-45065-5_3. ISBN 978-3-642-45064-8. ISSN 0302-9743. S2CID 31337539.
  28. ^ US patent 7475318, Kevin R. Driscoll, "Method for testing the sensitive input range of Byzantine filters", issued 2009-01-06, assigned to Honeywell International Inc. 
  29. ^ Walter, C.; Ellis, P.; LaValley, B. (2005). "The Reliable Platform Service: A Property-Based Fault Tolerant Service Architecture". Ninth IEEE International Symposium on High-Assurance Systems Engineering (HASE'05). pp. 34–43. doi:10.1109/HASE.2005.23. ISBN 978-0-7695-2377-4. S2CID 21468069.
  30. ^ Rubby, Matt (20 January 2024). "How Byzantine Generals Problem Relates to You in 2024". Swan Bitcoin. Retrieved 2024-01-27.
  31. ^ Tholoniat, Pierre; Gramoli, Vincent (2022), Tran, Duc A.; Thai, My T.; Krishnamachari, Bhaskar (eds.), "Formal Verification of Blockchain Byzantine Fault Tolerance", Handbook on Blockchain, Springer Optimization and Its Applications, Cham: Springer International Publishing, pp. 389–412, arXiv:1909.07453, doi:10.1007/978-3-031-07535-3_12, ISBN 978-3-031-07535-3, retrieved 2024-01-27
  32. ^ Deirmentzoglou, Papakyriakopoulos & Patsakis 2019, p. 28716.
  33. ^ "Node Operations".
  34. ^ M., Paulitsch; Driscoll, K. (9 January 2015). "Chapter 48:SAFEbus". In Zurawski, Richard (ed.). Industrial Communication Technology Handbook, Second Edition. CRC Press. pp. 48–1–48–26. ISBN 978-1-4822-0733-0.
  35. ^ Thomas A. Henzinger; Christoph M. Kirsch (26 September 2001). Embedded Software: First International Workshop, EMSOFT 2001, Tahoe City, CA, USA, October 8-10, 2001. Proceedings (PDF). Springer Science & Business Media. pp. 307–. ISBN 978-3-540-42673-8. Archived (PDF) from the original on 2015-09-22. Retrieved 2015-03-05.
  36. ^ Yeh, Y.C. (2001). "Safety critical avionics for the 777 primary flight controls system". 20th DASC. 20th Digital Avionics Systems Conference (Cat. No.01CH37219). Vol. 1. pp. 1C2/1–1C2/11. doi:10.1109/DASC.2001.963311. ISBN 978-0-7803-7034-0. S2CID 61489128.
  37. ^ "ELC: SpaceX lessons learned [LWN.net]". Archived from the original on 2016-08-05. Retrieved 2016-07-21.

Sources

Read other articles:

Halaman ini berisi artikel tentang Pertempuran Kosovo 1389. Untuk pertempuran lainnya, lihat Pertempuran Kosovo (disambiguasi). Untuk film tahun 1989 yang menggambarkan pertempuran ini, lihat Battle of Kosovo (film). Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Pertempuran Kosovo –...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Konsep Telepon seluler 5G adalah sebuah konsep teknologi yang akan memiliki software yang mendefinisikan skema radio dan modulasi seperti halnya skema pengontrol kesalahan terbaru (New Error-Control Schemes) yang dapat didownload melalui internet. Pen...

 

Feliks VAntipaus Feliks V, Antipaus terakhir dalam sejarah.Awal masa jabatan5 November 1439Masa jabatan berakhir7 April 1449PendahuluBenediktus XIV (sebagai Antipaus)Eugenius IV (sebagai Paus)PenerusNikolas V (sebagai Paus)Jabatan tandinganEugenius IV and Nikolas VInformasi pribadiNama lahirAmadeus VIIILahir4 September 1383ChambéryWafat7 Januari 1451(1451-01-07) (umur 67)Orang tuaAmadeus VII, Count Savoy dan Bonne dari BerryPaus lainnya yang bernama Felix Amadeus VIII (4 September 1383 ...

Artikel biografi ini ditulis menyerupai resume atau daftar riwayat hidup (Curriculum Vitae). Tolong bantu perbaiki agar netral dan ensiklopedis.Harley Alfredo Benfica Mangindaan Wakil Wali Kota Manado ke-3Masa jabatan8 Desember 2010 – 8 Desember 2015PresidenSusilo Bambang YudhoyonoJoko WidodoGubernurSinyo Harry SarundajangWali kotaVicky Lumentut PendahuluAbdi BuchariPenggantiMor Dominus Bastiaan Informasi pribadiLahir29 Oktober 1975 (umur 48)Banda Aceh, AcehKebangsaanIndon...

 

Untuk nama sekolah, lihat SMA Nasional Marcelo H. del Pilar. Artikel ini bukan mengenai Gregorio del Pilar. Nama ini menggunakan cara penamaan Spanyol: nama keluarga pertama atau paternalnya adalah Hilario del Pilar dan nama keluarga kedua atau maternalnya adalah Gatmaitán. Marcelo H. del PilarMarcelo H. del Pilar ca. 1890LahirMarcelo Hilario y Gatmaytán30 Agustus 1850Bulacán, Bulacan, Kekaptenan Jenderal FilipinaMeninggal4 Juli 1896(1896-07-04) (umur 45)Barcelona, SpanyolSebab&#...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Miss Global 2016 – berita · surat kabar · buku · cendekiawan · JSTOR Miss Global 2016Tanggal24 September 2016TempatPhilippines Internatioal Convention Center, Manila, FilipinaPeserta40Finalis/Semifinalis...

Gaius MariusPatung kepala Gaius Marius di Munich Glyptothek Konsul Republik RomawiMasa jabatan107 SM, 104–100 SM, 1 – 13 Januari 86 SMPendahuluM. Aurelius ScaurusPenggantiQuintus Servilius Caepio dan Gaius Atilius Serranus Informasi pribadiLahirca. 157 SMArpinum, Republik RomawiMeninggal13 Januari 86 SM (usia 70)Roma, Republik RomawiSuami/istriJulia (bibi dari pihak ayah dari Julius Caesar)AnakYoung Marius MudaSunting kotak info • L • B Gaius Marius[1] (157 ...

 

1566 إيكاروس    المكتشف فالتر بادي  موقع الاكتشاف مرصد بالومار  تاريخ الاكتشاف 27 يونيو 1949  سمي باسم إيكاروس  الأسماء البديلة 1949 MA  فئةالكوكب الصغير كويكبات أبولو،  وحزام الكويكبات  الأوج 1.969 وحدة فلكية[1]،  و1.969530551894392 وحدة فلكية  الحضيض 0.1866664 وح�...

 

1915–1934 military occupation For the 1994–1995 United States occupation, see Operation Uphold Democracy. United States occupation of HaitiPart of the Banana WarsTop to bottom, left to right: United States Marines in 1915 defending entrance gate in Cap-Haïtien, United States Marines and a Haitian guide patrolling the jungle during the Battle of Fort Dipitie, United States Navy Curtiss HS-2Ls and other airplanes in Haiti circa 1919DateJuly 28, 1915 – August 1, 1934(19 years and 4&#...

Pour les articles homonymes, voir Suède (homonymie). Royaume de Suède(sv) Konungariket Sverige Écouter Drapeau de la Suède Armoiries de la Suède Devise en suédois : För Sverige i tiden (« Toujours pour la Suède[1] ») Hymne en suédois : Du gamla, du fria (« Toi l'ancienne, toi la libre »), de facto Fête nationale 6 juin · Événement commémoré Élection de Gustave Ier Vasa en tant que roi de Suède et fin de l'Union ...

 

Torre VadofrazioneTorre Vado – Veduta LocalizzazioneStato Italia Regione Puglia Provincia Lecce Comune Morciano di Leuca TerritorioCoordinate39°50′02″N 18°16′27″E / 39.833889°N 18.274167°E39.833889; 18.274167 (Torre Vado)Coordinate: 39°50′02″N 18°16′27″E / 39.833889°N 18.274167°E39.833889; 18.274167 (Torre Vado) Altitudine23 m s.l.m. Abitanti83 (2013) Altre informazioniCod. postale73040 Prefisso0833...

 

Overtone flute of Russia and Ukraine A kalyuka made out of hogweed The kalyuka (or kolyuka, Russian: калюка, колюка) is a Russian and Ukrainian overtone flute, lacking playing holes. Traditionally, kalyukas were made from hollow plant stems, such as motherwort, or angelica.[1] Modern versions of the instrument are usually made from PVC, an inexpensive and durable substitute. The upper end of the kalyuka is open, and although it has a built-in fipple[2] to produce s...

Chronologies Chronologie du sport 1974 1975 1976  1977  1978 1979 1980Mois :Jan - Fév - Mar - Avr - Mai - Juin Juil - Aoû - Sep - Oct - Nov - Déc 1976 ◄◄ 1977 en sport ►► 1978 Chronologie dans le monde 1974 1975 1976  1977  1978 1979 1980Décennies :1940 1950 1960  1970  1980 1990 2000Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algé...

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

غزوة ذي قرد. غزوة ذي قَرَد أو غزوة الغابة. وقعت في السنة السادسة للهجرة بين 500 إلى 700 من قوات المسلمين بقيادة النبي محمد ، طاردوا خلالها 40 راكباً و سيد ذبيان عيينة بن حصن الفزاري مع جماعة من غطفان، الذين قد أغاروا على لقاح (حوامل الإبل ذات اللبن) والنبي محمد بالغابة، وقتلوا حار...

President of Poland from 2005 to 2010 Lech KaczyńskiOfficial portrait, 2006President of PolandIn office23 December 2005 – 10 April 2010Prime MinisterKazimierz MarcinkiewiczJarosław KaczyńskiDonald TuskPreceded byAleksander KwaśniewskiSucceeded byBronisław Komorowski (acting)President of the Supreme Audit OfficeIn office14 February 1992 – 8 June 1995PresidentLech WałęsaPrime MinisterJan OlszewskiWaldemar PawlakHanna SuchockaWaldemar PawlakJózef OleksyPreceded byWa...

 

Театр кіно імені Тараса Шевченка Театр кіно імені Тараса Шевченка.На честь Шевченко Тарас Григорович 48°00′21″ пн. ш. 37°48′14″ сх. д. / 48.00583° пн. ш. 37.80389° сх. д. / 48.00583; 37.80389Країна  УкраїнаРозташування ДонецькСтатус спадщини пам'ятка архітек...

 

Organization of Reform Judaism in North America Union for Reform JudaismAbbreviationURJTheologyReform JudaismPresidentRabbi Richard JacobsCCAR PresidentRabbi Ron Segal[1]AssociationsWorld Union for Progressive JudaismRegionUnited States and CanadaHeadquarters633 Third Avenue, New York CityFounderIsaac Mayer WiseOriginJuly 8, 1873 Melodeon Hall, Cincinnati, OhioCongregations831Members~880,000 affiliates600,000–1,150,000 identifyingOfficial websitewww.urj.org The Union for Reform Juda...

Basilika Santo Yohanes Pembaptisbahasa Inggris: Basilica of Saint John the BaptistBasilika Santo Yohanes Pembaptis40°48′12″N 81°22′38″W / 40.8033°N 81.3772°W / 40.8033; -81.3772Lokasi627 McKinley Avenue NWCanton, OhioNegaraAmerika SerikatDenominasiGereja Katolik RomaSitus webwww.stjohncanton.comSejarahDidirikan1823Dedikasi1872ArsitekturStatusbasilika minorStatus fungsionalAktifArsitekJames Renwick, Jr.Selesai1871AdministrasiKeuskupanKeuskupan Youngstown...

 

In this Chinese name, the family name is Yang. Fictional character Yang YansiGenerals of the Yang Family characterAn illustration from an early copy of the novel Records of the Two Songs, South and North (兩宋南北志傳) depicting Yang Qilang's tragic death. The copy is dated between 1573 and 1620.In-universe informationAliasYang Xi (楊希)Yang Yanci (楊延慈)NicknameYang Qilang (楊七郎; Yang's 7th son)SpouseDu Jin'e (杜金娥)ChildrenYang Zongying (楊宗英), sonFatherYang YeMoth...