Burr–Erdős conjecture

In mathematics, the Burr–Erdős conjecture was a problem concerning the Ramsey number of sparse graphs. The conjecture is named after Stefan Burr and Paul Erdős, and is one of many conjectures named after Erdős; it states that the Ramsey number of graphs in any sparse family of graphs should grow linearly in the number of vertices of the graph.

The conjecture was proven by Choongbum Lee. Thus it is now a theorem.[1]

Definitions

If G is an undirected graph, then the degeneracy of G is the minimum number p such that every subgraph of G contains a vertex of degree p or smaller. A graph with degeneracy p is called p-degenerate. Equivalently, a p-degenerate graph is a graph that can be reduced to the empty graph by repeatedly removing a vertex of degree p or smaller.

It follows from Ramsey's theorem that for any graph G there exists a least integer , the Ramsey number of G, such that any complete graph on at least vertices whose edges are coloured red or blue contains a monochromatic copy of G. For instance, the Ramsey number of a triangle is 6: no matter how the edges of a complete graph on six vertices are colored red or blue, there is always either a red triangle or a blue triangle.

The conjecture

In 1973, Stefan Burr and Paul Erdős made the following conjecture:

For every integer p there exists a constant cp so that any p-degenerate graph G on n vertices has Ramsey number at most cp n.

That is, if an n-vertex graph G is p-degenerate, then a monochromatic copy of G should exist in every two-edge-colored complete graph on cp n vertices.

Known results

Before the full conjecture was proved, it was first settled in some special cases. It was proven for bounded-degree graphs by Chvátal et al. (1983); their proof led to a very high value of cp, and improvements to this constant were made by Eaton (1998) and Graham, Rödl & Rucínski (2000). More generally, the conjecture is known to be true for p-arrangeable graphs, which includes graphs with bounded maximum degree, planar graphs and graphs that do not contain a subdivision of Kp.[2] It is also known for subdivided graphs, graphs in which no two adjacent vertices have degree greater than two.[3]

For arbitrary graphs, the Ramsey number is known to be bounded by a function that grows only slightly superlinearly. Specifically, Fox & Sudakov (2009) showed that there exists a constant cp such that, for any p-degenerate n-vertex graph G,

Notes

References

  • Alon, Noga (1994), "Subdivided graphs have linear Ramsey numbers", Journal of Graph Theory, 18 (4): 343–347, CiteSeerX 10.1.1.106.6586, doi:10.1002/jgt.3190180406, MR 1277513.
  • Burr, Stefan A.; Erdős, Paul (1975), "On the magnitude of generalized Ramsey numbers for graphs", Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. 1 (PDF), Colloq. Math. Soc. János Bolyai, vol. 10, Amsterdam: North-Holland, pp. 214–240, MR 0371701.
  • Chen, Guantao; Schelp, Richard H. (1993), "Graphs with linearly bounded Ramsey numbers", Journal of Combinatorial Theory, Series B, 57 (1): 138–149, doi:10.1006/jctb.1993.1012, MR 1198403.
  • Chvátal, Václav; Rödl, Vojtěch; Szemerédi, Endre; Trotter, William T. Jr. (1983), "The Ramsey number of a graph with bounded maximum degree", Journal of Combinatorial Theory, Series B, 34 (3): 239–243, doi:10.1016/0095-8956(83)90037-0, MR 0714447.
  • Eaton, Nancy (1998), "Ramsey numbers for sparse graphs", Discrete Mathematics, 185 (1–3): 63–75, doi:10.1016/S0012-365X(97)00184-2, MR 1614289.
  • Fox, Jacob; Sudakov, Benny (2009), "Two remarks on the Burr–Erdős conjecture", European Journal of Combinatorics, 30 (7): 1630–1645, arXiv:0803.1860, doi:10.1016/j.ejc.2009.03.004, MR 2548655, S2CID 8570007.
  • Graham, Ronald; Rödl, Vojtěch; Rucínski, Andrzej (2000), "On graphs with linear Ramsey numbers", Journal of Graph Theory, 35 (3): 176–192, doi:10.1002/1097-0118(200011)35:3<176::AID-JGT3>3.0.CO;2-C, MR 1788033.
  • Graham, Ronald; Rödl, Vojtěch; Rucínski, Andrzej (2001), "On bipartite graphs with linear Ramsey numbers", Paul Erdős and his mathematics (Budapest, 1999), Combinatorica, 21 (2): 199–209, doi:10.1007/s004930100018, MR 1832445, S2CID 485716
  • Kalai, Gil (May 22, 2015), "Choongbum Lee proved the Burr-Erdős conjecture", Combinatorics and more, retrieved 2015-05-22
  • Lee, Choongbum (2017), "Ramsey numbers of degenerate graphs", Annals of Mathematics, 185 (3): 791–829, arXiv:1505.04773, doi:10.4007/annals.2017.185.3.2, S2CID 7974973
  • Li, Yusheng; Rousseau, Cecil C.; Soltés, Ľubomír (1997), "Ramsey linear families and generalized subdivided graphs", Discrete Mathematics, 170 (1–3): 269–275, doi:10.1016/S0012-365X(96)00311-1, MR 1452956.
  • Rödl, Vojtěch; Thomas, Robin (1991), "Arrangeability and clique subdivisions", in Graham, Ronald; Nešetřil, Jaroslav (eds.), The Mathematics of Paul Erdős, II (PDF), Springer-Verlag, pp. 236–239, MR 1425217.

Read other articles:

Al Fujairah الفجيرةEmiratEmirat FujairahBenteng Fujairah BenderaLokasi Fujairah di UEANegara Uni Emirat ArabEmiratFujairahPemerintahan • EmirYM Syekh Hamad bin Muhammad Al Sharqi • Putra MahkotaYM Syekh Muhammad bin Hamad bin Muhammad Al SharqiLuas • Emirat1.166 km2 (450 sq mi)Populasi (Estimasi 2009) • Metropolitan152.000Zona waktuUTC+4 (Waktu standar UEA)Situs webFujairah Fujairah (Arab: الفجيرةcode: ar i...

 

Untuk pengertian lain, lihat Bontoa (disambiguasi). Koordinat: 4°56′26″S 119°32′42″E / 4.9406414°S 119.5451052°E / -4.9406414; 119.5451052 BontoaᨅᨚᨈᨚᨕᨙᨅᨚᨈᨚᨕKelurahanKantor Kelurahan BontoaNegara IndonesiaProvinsiSulawesi SelatanKabupatenMarosKecamatanBontoaKodepos90554[1]Kode Kemendagri73.09.05.1001 Kode BPS7308030006 Luas2,91 km²Jumlah penduduk2.990 jiwa tahun 2019Kepadatan1.027,49 jiwa/km² tahun 2019Jumlah RT17Jumlah R...

 

Markas besar Komisi Pusat Pemilihan Umum Ukraina Komisi Pusat Pemilihan Umum Ukraina (Ukrainian: Центральна виборча комісія України/Tsentral'na viborcha komisiya Ukrainicode: uk is deprecated , biasa disingkat ЦВК (Tse-Ve-Ka; kadang-kadang merujuk ke Komisi Pemilihan Pusat Ukraina) adalah badan kolegiat tetap pemerintah Ukraina. Misi dan wewenang Komisi Pusat Pemilihan Umum Ukraina dibebani tanggung jawab mengawasi dan menyelenggarakan pemilihan presiden, par...

Bintang Republik IndonesiaDianugerahkan oleh Presiden IndonesiaTipeBintang SipilDibentuk1959Negara IndonesiaKelayakanSipilStatusSaat ini dianugerahkanPemilik PertamaPresiden IndonesiaStatistikPenganugerahan pertama1959Penganugerahan terakhir2023PrioritasTingkat lebih tinggiTidak ada (tertinggi)Tingkat lebih rendahBintang Mahaputera Bintang Republik Indonesia adalah tanda kehormatan yang tertinggi yang diberikan oleh Pemerintah Republik Indonesia.[1] Anugerah kehormatan ini dibent...

 

GMA Drama logo Berikut ini adalah daftar seri drama televisi asli Filipina yang pertama kali ditayangkan atau akan ditayangkan di GMA Network, jaringan televisi dan radio penyiaran komersial free-to-air di Filipina yang dimiliki oleh GMA Network, Inc. Seri drama diurutkan berdasarkan dekade dan tahun peluncurannya, dengan judul internasional resmi dicantumkan dalam tanda kurung. 1980-an Judul Perdana Terakhir Anna Liza 4 Februari 1980 10 Mei 1985 Guni Guni 1980 1980 Nang Dahil sa Pag-Ibig (Ka...

 

Robert Paulson redirects here. For the voice actor, see Rob Paulsen. 1996 novel by Chuck Palahniuk Fight Club First edition coverAuthorChuck PalahniukCover artistMichael Ian KayeMelissa HaydenProverbial Inc.CountryUnited StatesLanguageEnglishGenreSatirical novelPublisherW. W. NortonPublication dateAugust 17, 1996Media typePrint (Hardcover)Pages208ISBN0-393-03976-5OCLC33440073Dewey Decimal813/.54 20LC ClassPS3566.A4554 F54 1996 Fight Club is a 1996 novel by Chuck Palahniuk. It f...

Lord Buddha statue in Japan Japanese sutra book open to the Shorter Sukhāvatīvyūha Sūtra Part of a series onMahāyāna Buddhism Teachings Bodhisattva Buddhahood Mind of Awakening Buddha-nature Skillful Means Transcendent Wisdom Transcendent Virtues Emptiness Two truths Consciousness-only Three bodies Three vehicles Non-abiding Nirvana One Vehicle Bodhisattva Precepts Bodhisattva vow Bodhisattva stages Pure Lands Luminous mind Dharani Three Turnings Buddhas and Bodhisattvas Shakyamuni Amit...

 

Indian professional golfer Arjun AtwalAtwal in action in 2012Personal informationFull nameArjun Singh AtwalBorn (1973-03-20) 20 March 1973 (age 51)Asansol, IndiaHeight6 ft 1 in (1.85 m)Weight185 lb (84 kg; 13.2 st)Sporting nationality IndiaResidenceKolkata, IndiaWindermere, Florida, U.S.Spouse Sona Atwal ​(m. 2000)​Children2CareerTurned professional1995Current tour(s)PGA TourAsian TourFormer tour(s)European TourWeb.com TourP...

 

American politician For other people named Paul Morton, see Paul Morton (disambiguation). Paul Morton36th United States Secretary of the NavyIn officeJuly 1, 1904 – June 30, 1905PresidentTheodore RooseveltPreceded byWilliam MoodySucceeded byCharles Bonaparte Personal detailsBorn(1857-05-22)May 22, 1857Detroit, Michigan, U.S.DiedJanuary 19, 1911(1911-01-19) (aged 53)New York City, New York, U.S.Political partyRepublicanChildrenPauline SabinParentJulius Sterling Morton (father)S...

Disambiguazione – Se stai cercando il conflitto avvenuto nel 1961, vedi Invasione della baia dei Porci. Questa voce sugli argomenti geografia di Cuba e golfi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Baia dei PorciBaia dei Porci vista da Cueva de Los PecesParte diGolfo di Cazones, Mar dei Caraibi Stato Cuba Coordinate22°13′N 81°10′W / 22.216667°N 81.166667°W22.216667; -81.166667Coordinate: 22°13′N 81°10′W...

 

Nottingham John Player 1973 Sport Tennis Data 11 giugno - 17 giugno Edizione 6ª Superficie Erba Montepremi 75 000 $[1] Campioni Singolare maschile Erik Van Dillen Singolare femminile Billie Jean King Doppio maschile Tom Gorman / Erik Van Dillen Doppio femminile Rosemary Casals / Billie Jean King 1972 1974 Il Nottingham John Player 1973 è stato un torneo di tennis giocato sull'erba. È stata la 6ª edizione del Nottingham John Player che fa parte del Commercial Union Assur...

 

Patra GumalaLahirFadhil Patra Dwi Gumala20 Oktober 1985 (umur 38)Jakarta, IndonesiaPekerjaanPenyiar radio, Musisi, Penulis, Pelawak tunggal, penyiniar, dosenTahun aktif2006 - sekarang (Penyiar radio) 2008 - sekarang (Musisi) 2012 (Penulis) 2016 - sekarang (Pelawak tunggal)Suami/istriIrena Fatma Pratiwi ​(m. 2011)​Anak2Orang tua(Alm) H. Gustian Ruslan Fadhil Patra Dwi Gumala (lahir 20 Oktober 1985) adalah seorang penyiar radio, musisi, penulis, dan pelaw...

Real-time operating system Operating system ChibiOS/RTDeveloperGiovanni Di SirioWritten inC, assembly languageOS familyReal-time operating systemsWorking stateCurrentSource modelOpen sourceInitial release2007; 17 years ago (2007)Latest release21.11.3 / December 29, 2022; 16 months ago (2022-12-29)Repositoryosdn.net/projects/chibios/scm/svn/ Marketing targetEmbedded systemsAvailable inEnglishPlatformsIntel 80386; ARM 7, 9, Cortex: M0, M3, M4, M7;[1] ...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Agu Casmir Informasi pribadiNama lengkap Agu CasmirTanggal lahir 23 Maret 1984 (umur 40)[butuh rujukan]Tempat lahir Lagos, NigeriaTinggi 180 m (590 ft 7 in)Posisi bermain PenyerangKarier senior*Tahun Tim Tampil (Gol)2002–2003 Woodlands Wellington 53 (41)2004–2005 Young Lions 34 (31)2006 Woodlands Wellington 30 (14)2007 Gombak United 26 (11)2008 PDRM 3 (1)2008–2010 Gombak United 57 (23)2010–2011 Persija Jakarta 21 (9)2012 LionsXII 14 (5)2013 Bhayangkara F.C...

Election in Ohio Main article: 1816 United States presidential election 1816 United States presidential election in Ohio ← 1812 November 1 – December 4, 1816 1820 →   Nominee James Monroe Rufus King Party Democratic-Republican Federalist Home state Virginia New York Running mate Daniel D. Tompkins John E. Howard Electoral vote 8 0 Popular vote 3,326 593 Percentage 84.87% 15.13% President before election James Madison Democratic-Republican Elect...

 

Prehistoric proglacial lake in Western Montana Lake MissoulaMap of MontanaLocationWestern MontanaCoordinates46°56′20″N 114°08′37″W / 46.93889°N 114.14361°W / 46.93889; -114.14361Area7,770 km2 (3,000 sq mi) U.S. National Natural LandmarkDesignated1966 Lake MissoulaWave-cut strandlines cut into the slope at left in photo. These cuts record former high-water lines, or shorelines. Gullies above the highway are the result of modern-day erosion. (N...

 

Currency of Iraq Iraqi dinarدينار عراقي (Arabic) دیناری عێراقی (Kurdish)ID 25,000 banknote from the 2003 seriesISO 4217CodeIQD (numeric: 368)Subunit0.001UnitSymbolID or د.ع‎DenominationsSubunit 1⁄1000filsBanknotes Freq. usedID 250, ID 500, ID 1,000, ID 5,000, ID 10,000, ID 25,000 Rarely usedID 50,000DemographicsUser(s) IraqIssuanceCentral bankCentral Bank of Iraq Websit...

Portuguese equestrian José BeltrãoPersonal informationBorn27 November 1905Lisbon, PortugalDied1948 (aged approximately 42)Lisbon, PortugalSportSportEquestrianismEventShow jumping Medal record Representing  Portugal 1936 Berlin Team jumping José Gil de Gouveia Beltrão (27 November 1905 – 1948) was a Portuguese horse rider. At the 1936 Olympics he and his horse Biscuit won a team bronze medal in show jumping after finishing sixth individually.[1] References ^ José Beltrão. ...

 

Bf 110 Bf 110 dari Nachtjagdgeschwader 4 (1943) Jenis Pesawat tempur berat Pesawat serang darat Pesawat tempur pengebom/Pesawat tempur malam Pembuat Bayerische Flugzeugwerke (BFW) Messerschmitt Perancang Willy Messerschmitt Penerbangan perdana 12 Mei 1936 Diperkenalkan 1937 Dipensiunkan 1945 (Luftwaffe) Pengguna utama Luftwaffe Angkatan Udara Hungaria Regia Aeronautica Angkatan Udara Rumania Jumlah 6.170[1] Messerschmitt Bf 110 (disebut BF 110 atau ME 110[2]) merupakan p...