Broadcasting Press Guild
|
Read other articles:
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2016. 7 SumpahAlbum studio karya New EtaDirilis1 Juli 2008GenreRockLabelTrinity Optima Production 7 Sumpah merupakan sebuah album musik pertama karya New Eta. Dirilis pada tahun 2008. Lagu utamanya di album ini ialah 7 Sumpah. Daftar lagu Hingga Malam Be...
Kadato KieKedaton Sultan TidoreTampak depan Kedaton Sultan Tidore (Kadato Kie) di TidoreInformasi umumJenisKadatonGaya arsitekturLang Kie Jiko Sorabi[1]LokasiSoasio, Tidore, Tidore KepulauanNegara IndonesiaMulai dibangun1657; Dibangun Kaicil GolofinoRampung1812-1856; Diperluas dan dibuat lebih permanen 2004-2010; Dibangun kembaliDibongkar1912; Hancur karena konflik Istana Kesultanan Tidore (Kadato Kie) di Tidore. Kadato Kie (Istana Kie), juga disebut Kedaton Tidore, adalah istana...
Halaman ini berisi artikel tentang pengarang Amerika. Untuk kegunaan lain, lihat Cormac McCarthy (disambiguasi). Cormac McCarthyMcCarthy, 1973LahirCharles McCarthy20 Juli 1933 (umur 90)Providence, Rhode Island, ASMeninggal13 Juni 2023(2023-06-13) (umur 89)Santa Fe, New Mexico, A.S.PekerjaanNovelis, pengarang drama, penulis naskahKebangsaanAmerikaGenreSouthern gothic, barat, pasca-apokaliptikKarya terkenalSuttree (1979)Blood Meridian (1985)All the Pretty Horses (1992)No Country ...
1986 studio album by Miyuki Nakajima36.5 °CStudio album by Miyuki NakajimaReleasedNovember 12, 1986Recordedat the Peninsula, Wonder Station, Studio Two-two-One, Free Port, Hitokuchizaka, and Epicurus studiosGenreFolk rock, arena rock, kayokyokuLength43:51LabelPony Canyon/AARD-VARKProducerYoshihiro KaiMiyuki Nakajima (credited to miss M.)Miyuki Nakajima chronology miss M.(1985) 36.5 °C(1986) Utagoyomi(1987) 36.5 °C is the 14th studio album by a Japanese singer-song...
Australian politician (born 1963) The HonourableKevin HoganMPHogan in 2019Shadow Minister for Trade and TourismIncumbentAssumed office 5 June 2022MinisterDon FarrellLeaderPeter DuttonPreceded byMadeleine King (Trade)Don Farrell (Tourism)Deputy Leader of Opposition Business in the HouseIncumbentAssumed office 5 June 2022LeaderPeter DuttonPreceded byMark ButlerDeputy Speaker of the HouseIn office26 March 2018 – 10 February 2020Preceded byMark CoultonSucceeded byLlew O'BrienMe...
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Marek Kotański – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Marek Kotański (March 11, 1942 – August 19, 2002) was a Polish charity worker and campaigner on behalf of disadvantaged people, including the hom...
2010 United States House of Representatives election in Montana ← 2008 November 2, 2010 2012 → Nominee Denny Rehberg Dennis McDonald Mike Fellows Party Republican Democratic Libertarian Popular vote 217,696 121,954 20,691 Percentage 60.4% 33.8% 5.7% County resultsRehberg: 40–50% 50–60% 60–70% 70–80% 80�...
Medical school of the University of Florida in Jacksonville This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (August 2016) (Learn how and when to remove this message) College of Medicine – JacksonvilleFormer namesJacksonville Health Education Program (JHEP)TypeMedical schoolEstablished1985Parent institutionHealt...
Mountain pass across the Julian Alps in Slovenia This article is about the Slovenian pass. For the Slovenian footballer, see Dare Vršič. Vršič PassThe Vršič PassElevation1,611 m (5,285 ft)Traversed byRuska cestaLocationUpper Carniola, SloveniaRangeJulian AlpsCoordinates46°26′8″N 13°44′40″E / 46.43556°N 13.74444°E / 46.43556; 13.74444Vršič PassLocation of the Vršič Pass The Vršič Pass (pronounced [ʋəɾˈʃitʃ]; Slovene: prelaz Vršič,...
Species of shark Northern sawtail catshark Conservation status Data Deficient (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Chondrichthyes Subclass: Elasmobranchii Subdivision: Selachimorpha Order: Carcharhiniformes Family: Scyliorhinidae Genus: Figaro Species: F. striatus Binomial name Figaro striatusGledhill, Last & W. T. White, 2008 Range of the northern sawtail catshark The northern sawtail catshark (Figaro stria...
Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...
PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) merupakan modul penelitian sinar kosmik operasional yang melekat pada satelit yang mengorbit Bumi. PAMELA diluncurkan pada tanggal 15 Juni 2006 dan merupakan eksperimen berbasis satelit pertama yang didedikasikan untuk deteksi sinar kosmik, dengan fokus khusus pada komponen antimateri mereka, dalam bentuk positron dan antiproton. Tujuan lainnya termasuk pemantauan jangka panjang dari modulasi surya dari sinar ko...
Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2020) البوابة الوطنية للتعاملات الإلكترونية الحكومية سعوديشعار بوابة سعوديمعلومات عامةالتاريخ منذ 2006البلد المملكة العربية السعوديةمقدمة من برنامج التعاملات ا�...
Tretan MuslimLahirAditya Muslim10 Maret 1991 (umur 33)Bangkalan, Jawa Timur, IndonesiaKebangsaanIndonesiaNama lainTretan MuslimAlmamaterUniversitas Muhammadiyah SurabayaPekerjaanPelawak tunggalpenyiniaraktorpenyiar radioTahun aktif2013—sekarangSuami/istriRinda Rizqi Viani Permatasari (m. 2019)Anak1 Aditya Muslim, A.Md.Kep.[1][2][3] (lahir 10 Maret 1991), dikenal sebagai Tretan Muslim, merupakan seorang pelawak tu...
Former military command formation of the British Royal Air Force This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Royal Air Force Germany – news · newspapers · books · scholar · JSTOR (May 2012) (Learn how and when to remove this message) Royal Air Force GermanyRoyal Air Force Germany badgeActive1 Januar...
Medieval exonym for Rus' For other uses, see Ruthenia (disambiguation). Extent of Kievan Rus', 1054–1132 Ruthenia[a] is an exonym, originally used in Medieval Latin, as one of several terms for Kievan Rus'.[1] It is used to refer to Rus' region, a triangular area which mainly corresponds to the tribe of Polans in Dnieper Ukraine.[2] It is also used to refer to the East Slavic and Eastern Orthodox people of the Grand Duchy of Lithuania and the Kingdom of Poland, and l...
MnetQuốc giaHàn QuốcTrụ sởCJ E&M Center, Sangam-dong, Mapo-gu, SeoulChương trìnhĐịnh dạng hình2160p (UHDTV)Sở hữuChủ sở hữuCJ Group(CJ E&M)Kênh liên quanKMTVNKênh CGVXTMO'liveNational GeographicChunghwa TVTooniverseOrion Cinema NetworkSuper ActionOngamenetBadook TVCatchOnOnStyleStoryOnOrion Cinema NetworkKênh MLịch sửLên sóng1993Tên cũMusic Network (1993-1995)Liên kết ngoàiWebsiteMnet.interest.meCó sẵnTrực tuyếnKOREALIV...
Mathematical object Geometric realization of a 3-dimensional abstract simplicial complex In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex.[1] For example, in a 2-dimensional simplicial complex, the sets in the family ar...
Cet article est une ébauche concernant l’astronautique et les États-Unis. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. Le programme spatial des États-Unis est le programme spatial le plus important financièrement dans le monde. La Russie, la Chine et les États-Unis sont en 2018 les trois seuls pays au monde à avoir maîtrisé l'envoi d...