Borel–Carathéodory theorem

In mathematics, the Borel–Carathéodory theorem in complex analysis shows that an analytic function may be bounded by its real part. It is an application of the maximum modulus principle. It is named for Émile Borel and Constantin Carathéodory.

Statement of the theorem

Let a function be analytic on a closed disc of radius R centered at the origin. Suppose that r < R. Then, we have the following inequality:

Here, the norm on the left-hand side denotes the maximum value of f in the closed disc:

(where the last equality is due to the maximum modulus principle).

Proof

Define A by

If f is constant c, the inequality follows from , so we may assume f is nonconstant. First let f(0) = 0. Since Re f is harmonic, Re f(0) is equal to the average of its values around any circle centered at 0. That is,

Since f is regular and nonconstant, we have that Re f is also nonconstant. Since Re f(0) = 0, we must have Re for some z on the circle , so we may take . Now f maps into the half-plane P to the left of the x=A line. Roughly, our goal is to map this half-plane to a disk, apply Schwarz's lemma there, and make out the stated inequality.

sends P to the standard left half-plane. sends the left half-plane to the circle of radius R centered at the origin. The composite, which maps 0 to 0, is the desired map:

From Schwarz's lemma applied to the composite of this map and f, we have

Take |z| ≤ r. The above becomes

so

,

as claimed. In the general case, we may apply the above to f(z)-f(0):

which, when rearranged, gives the claim.

Alternative result and proof

We start with the following result:[1]

Theorem — If is analytic on for some , and on , then ,

and similarly if .

Proof[2]

It suffices to prove the case, since the case is found by .

WLOG, subtract a constant away, to get .

Do three contour integrals around using Cauchy integral formula:

Pick angle , so that . Then by linearly combining the three integrals, we get

The imaginary part vanishes, and the real part gives

The integral is bounded above by , so we have the result.

Corollary 1 — With the same assumptions, for all ,

Proof

It suffices to prove the case of .

By previous result, using the Taylor expansion,

Corollary 2 (Titchmarsh, 5.51, improved) — With the same assumptions, for all , and all integer

Proof

It suffices to prove the case of as well. And similarly to above,


Applications

Borel–Carathéodory is often used to bound the logarithm of derivatives, such as in the proof of Hadamard factorization theorem.

The following example is a strengthening of Liouville's theorem.

Liouville's theorem, improved — If is an entire function, such that there exists a sequence with , then is a polynomial of degree at most .

Proof

By Borel-Caratheodory lemma, for any ,

where .

Letting , and taking the limit:

Thus by Liouville's theorem, is a constant function, and it converges to zero, so it is zero. So is a polynomial of degree at most .

Corollary — If an entire function has no roots and is of finite order , then for some polynomial of degree .

Proof

Apply the improved Liouville theorem to .

References

  1. ^ Ishita Goluguri, Toyesh Jayaswal, Andrew Lee. "The Prime Number Theorem: A PRIMES Exposition" (PDF).{{cite web}}: CS1 maint: multiple names: authors list (link)
  2. ^ Liu, Travor. "Borel-Caratheodory Lemma and Its Application".

Sources

  • Lang, Serge (1999). Complex Analysis (4th ed.). New York: Springer-Verlag, Inc. ISBN 0-387-98592-1.
  • Titchmarsh, E. C. (1938). The theory of functions. Oxford University Press.

Read other articles:

Baked or fried turnover consisting of pastry and filling This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (April 2016) (Learn how and when to remove this template message) EmpanadaEmpanadillas from SpainAlternative namesPastryTypePastryCourseAppetizer, main coursePlace of originSpainRegion or stateGaliciaAssociated cuisineSpanish, Argentinian, Chilean...

 

Kwartir Daerah (Kwarda) adalah satuan organisasi yang mengelola Gerakan Pramuka di tingkat Provinsi. Berdasarkan tingkatan/wilayahnya, Kwarda berkedudukan di masing-masing ibu kota Provinsi. Pengurus Kwarda diketuai oleh Ketua Kwarda (disingkat Ka Kwarda). Pengurus Kwartir Daerah [1] Ketua Kwarda ditetapkan oleh Musyawarah Daerah (Musda) untuk masa bakti berikutnya, dan dilantik oleh Ketua Presidium Pimpinan Musda. Pengurus Kwarda dibentuk oleh Musda melalui tim formatur, yang dituang...

 

Voce principale: Nuova Cosenza Calcio. Associazione Sportiva CosenzaStagione 1964-1965Sport calcio Squadra Cosenza Allenatore Domenico Rosati Presidente Comitato di Reggenza Serie C4º posto nel girone C. Maggiori presenzeCampionato: Campanini, Fontana, Marmiroli, Nicchi, Orlando (31) Miglior marcatoreCampionato: Campanini (14) 1963-1964 1965-1966 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti l'Associazione Sportiva Cosenza nelle competizioni...

SMAN 1 SUMBAWA BESARInformasiDidirikan1959AkreditasiAKepala SekolahDrs. H. Muhammad Tahir, M.Pd.Jumlah kelas8 rombel setiap tingkatJurusan atau peminatanIPA dan IPSRentang kelasX, XI IPA, XI IPS, XII IPA, XII IPSKurikulumKurikulum 2013AlamatLokasiJl. Garuda No. 1 Telp./Fax 0371-21723, Sumbawa Besar, Nusa Tenggara Barat,  IndonesiaKoordinat8°29′24″S 117°25′07″E / 8.489995°S 117.418706°E / -8.489995; 117.418706Situs webhttp://smanika-sumba...

 

Canadian ice hockey player This January 2023 about a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Dave McLlwain – news · newspapers · books · scholar · JSTOR (January 2023) (Learn how and when to remove this tem...

 

Village in Hampshire, England Human settlement in EnglandLyndhurstLyndhurst High Street, February 2020LyndhurstLocation within HampshirePopulation2,973 (2001 UK census) 3,029 (2011 Census)[1]DistrictNew ForestShire countyHampshireRegionSouth EastCountryEnglandSovereign stateUnited KingdomPost townLyndhurstPostcode districtSO40, SO43Dialling code023PoliceHampshire and Isle of WightFireHampshire and Isle of WightAmbulanceSouth Central UK ParliamentNew Fores...

MedusaMedusa, disegni di Stjepan Šejić UniversoUniverso Marvel Lingua orig.Inglese AutoriStan Lee Jack Kirby EditoreMarvel Comics 1ª app.marzo 1965 1ª app. inThe Fantastic Four (vol. 1[1]) n. 36 Editore it.Editoriale Corno 1ª app. it.maggio 1972 1ª app. it. inI Fantastici Quattro n. 31 Interpretata daSerinda Swan Voce italianaFederica De Bortoli Caratteristiche immaginarieAlter egoMedusalith Amaquelin-Boltagon Specieinumana SessoFemmina Etniaattilana Luogo ...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

British video game magazine This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Amiga Power – news · newspapers · books · scholar · JSTOR (October 2007) (Learn...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) رئيس وزراء أوسيتيا الجنوبية رئيس وزراء أوسيتيا الجنوبيةشعار أوسيتيا الجنوبية شاغل المنصب كونستانتين جوسو...

 

Men's combinedat the XVIII Olympic Winter GamesAlpine skiingVenueHakubaDateFebruary 9–13Competitors38 from 21 nationsWinning time3:08.06Medalists Mario Reiter  Austria Lasse Kjus  Norway Christian Mayer  Austria← 19942002 → Alpine skiing at the1998 Winter OlympicsCombinedmenwomenDownhillmenwomenGiant slalommenwomenSlalommenwomenSuper-Gmenwomenvte The Men's combined competition of the Nagano 1998 Olympics was held at Hakuba. The downhill was or...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hull Thunder – news · newspapers · books · scholar · JSTOR (September 2012) (Learn how and when to remove this message) Ice hockey team in Kingston upon Hull, United KingdomHull ThunderCityKingston upon Hull, United KingdomLeagueBNLFounded1999Operated1999-2002...

Naturally occurring optical phenomenon For other uses, see Mirage (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mirage – news · newspapers · books · scholar · JSTOR (January 2020) (Learn how and when to remove this message) Various kinds of mirages in one location taken over the course of...

 

ديفيد مونتانير   معلومات شخصية اسم الولادة (بالإسبانية: David Muntaner Juaneda)‏  الميلاد 12 يوليو 1983 (العمر 40 سنة)ميورقة، إسبانيا الجنسية  إسبانيا الحياة العملية الدور دراج المهنة دراج  نوع السباق سباق الدراجات على المضمار  آخر تحديث 2 مارس 2014 تعديل مصدري - تعديل   ديفي�...

 

Racing team Action Express RacingFounded2010Team principal(s)Jim France (Team Owner)Bob Johnson (Team Principal)Gary Nelson (Manager)Current seriesWeatherTech SportsCar ChampionshipFormer seriesRolex Sports Car SeriesCurrent drivers31: Full-time Pipo Derani Jack Aitken Alexander SimsDrivers'Championships5 ('14, '15, '16, '18, '21 IMSA)Websiteaxracing.com Action Express Racing (AXR) is a sports car racing team that currently competes in the IMSA WeatherTech SportsCar Championship.[1] T...

« Ministère des Affaires étrangères et européennes » redirige ici. Pour l'équivalent luxembourgeois, voir Ministère des Affaires étrangères et européennes (Luxembourg). Pour les articles homonymes, voir Ministère des Affaires étrangères et Quai d'Orsay (homonymie). Ministère de l'Europe et des Affaires étrangèresHistoireFondation 1547 : secrétaire d'État aux Affaires étrangères 1789 : ministère des Affaires étrangères ou des Relations extérieuresC...

 

维基百科中的醫學内容仅供参考,並不能視作專業意見。如需獲取醫療幫助或意見,请咨询专业人士。詳見醫學聲明。 失溫症1812年,拿破仑遠征俄羅斯,許多不耐嚴寒的法軍士兵皆死於失溫症[1]。症状 轻度:冷颤、意识模糊(英语:mental confusion)[2] 中度:冷颤停止、意识模糊加重[2] 重度:反常脫衣、心脏骤停[2] 类型神經內科與生理學的症狀[*]病�...

 

Architectural firm HOK Sport Venue Event redirects here. For other uses, see Hok. Not to be confused with Populus Ltd. Populous Holdings, Inc.IndustryArchitectureFounded2009HeadquartersKansas CityLondonBrisbaneArea servedWorldwideServicesSports, entertainment, events, conference and exhibition center architectureWebsitepopulous.com Populous, legally Populous Holdings, Inc., is a global architectural and design practice specializing in sports facilities, arenas and convention centers, as well ...

Portuguese nobleman and explorer Cristóvão de MendonçaCristóvam de MendonçaBorn1475Mourão, Kingdom of PortugalDied1532 (aged 56–57)OrmusNationalityPortugueseOccupationExplorerParent(s)Diogo de Mendonça[contradictory]Brites Soares de Albergaria Cristóvão de Mendonça (Mourão, 1475 – Ormus, 1532)[1] was a Portuguese noble and explorer who was active in South East Asia in the 16th century. Son of Diogo de Mendonça,[contradictory] Alcaide-mor (lord ...

 

Gorretocomune Gorreto – VedutaPanorama di Gorreto LocalizzazioneStato Italia Regione Liguria Città metropolitana Genova AmministrazioneSindacoPaolo Saredi (lista civica di centro-destra Gorreto si rinnova) dal 10-6-2024 Data di istituzione1861 TerritorioCoordinate44°36′21.84″N 9°17′32.76″E44°36′21.84″N, 9°17′32.76″E (Gorreto) Altitudine533 m s.l.m. Superficie18,88 km² Abitanti94[1] (31-05-2023) Densità4,98 ab./km² Fra...