Bacterial nanowires

Geobacter sulfurreducens and its nanowires

Bacterial nanowires (also known as microbial nanowires) are electrically conductive appendages produced by a number of bacteria most notably from the Geobacter and Shewanella genera.[1][2] Conductive nanowires have also been confirmed in the oxygenic cyanobacterium Synechocystis PCC6803 and a thermophilic, methanogenic coculture consisting of Pelotomaculum thermopropionicum and Methanothermobacter thermoautotrophicus.[2] From physiological and functional perspectives, bacterial nanowires are diverse.[3][4][5] The precise role microbial nanowires play in their biological systems has not been fully realized, but several proposed functions exist.[3] Outside of a naturally occurring environment, bacterial nanowires have shown potential to be useful in several fields, notably the bioenergy and bioremediation industries.[6][7]

Physiology

Geobacter nanowires were originally thought to be modified pili, which are used to establish connections to terminal electron acceptors during some types of anaerobic respiration. Further research has shown that Geobacter nanowires are composed of stacked cytochromes, namely OmcS and OmcZ. Despite being physiologically distinct from pili, bacterial nanowires are often described as pili anyway due to the initial misconception upon their discovery.[5] These stacked cytochrome nanowires form a seamless array of hemes which stabilize the nanowire via pi-stacking and provide a path for electron transport.[8] Species of the genus Geobacter use nanowires to transfer electrons to extracellular electron acceptors (such as Fe(III) oxides).[1] This function was discovered through the examination of mutants, whose nanowires could attach to the iron, but would not reduce it.[1]

Shewanella nanowires are also not technically pili, but extensions of the outer membrane that contain the decaheme outer membrane cytochromes MtrC and OmcA.[4] The reported presence of outer membrane cytochromes, and lack of conductivity in nanowires from the MtrC and OmcA-deficient mutant[9] directly support the proposed multistep hopping mechanism for electron transport through Shewanella nanowires.[10][11][12]

Additionally, nanowires can facilitate long-range electron transfer across thick biofilm layers.[6] By connecting to other cells around them, nanowires allow bacteria located in anoxic conditions to still use oxygen as their terminal electron acceptor. For example, organisms in the genus Shewanella have been observed to form electrically conductive nanowires in response to electron-acceptor limitation.[2]

History

The concept of electromicrobiology has been around since the early 1900s when a series of discoveries found cells capable of producing electricity. It was demonstrated for the first time in 1911 by Michael Cressé Potter that cells could convert chemical energy to electrical energy.[3][13] It wasn't until 1988 that extracellular electron transport (EET) was observed for the first time with the independent discoveries of Geobacter and Shewanella bacteria and their respective nanowires. Since their discoveries, other nanowire containing microbes have been identified, but they remain the most intensively studied.[3][14][15] In 1998, EET was observed in a microbial fuel cell setting for the first time using Shewanella bacteria to reduce an Fe(III) electrode.[3][16] In 2010, bacterial nanowires were shown to have facilitated the flow of electricity into Sporomusa bacteria. This was the first observed instance of EET used to draw electrons from the environment into a cell.[3][17] Research persists to date to explore the mechanisms, implications, and potential applications of nanowires and the biological systems they are a part of.

Implications and potential applications

Biological implications

Microorganisms have shown to use nanowires to facilitate the use of extracellular metals as terminal electron acceptors in an electron transport chain. The high reduction potential of the metals receiving electrons is capable of driving a considerable ATP production.[18][3] Aside from that, the extent of the implications brought on by the existence of bacterial nanowires is not fully realized. It has been speculated nanowires may function as conduits for electron transport between different members of a microbial community. This has potential to allow for regulatory feedback or other communication between members of the same or even different microbial species.[17][18] Some organisms are capable of both expelling and taking in electrons through nanowires.[3] Those species would likely be able to oxidize extracellular metals by using them as an electron or energy source to facilitate energy consuming cellular processes.[18] Microbes also could potentially use nanowires to temporarily store electrons on metals. Building up an electron concentration on a metal anode would create a battery of sorts that the cells could later use to fuel metabolic activity.[18] While these potential implications provide a reasonable hypothesis towards the role of the bacterial nanowire in a biological system, more research is needed to fully understand the extent of how cellular species benefit from nanowire use.[3]

Bioenergy applications in microbial fuel cells

In microbial fuel cells (MFCs), bacterial nanowires generate electricity via extracellular electron transport to the MFC's anode.[19] Nanowire networks have been shown to enhance the electricity output of MFCs with efficient and long-range conductivity. In particular, bacterial nanowires of Geobacter sulfurreducens possess metallic-like conductivity, producing electricity at levels comparable to those of synthetic metallic nanostructures.[20] When bacterial strains are genetically manipulated to boost nanowire formation, higher electricity yields are generally observed.[21] Coating the nanowires with metal oxides also further promotes electrical conductivity.[22] Additionally, these nanowires can transport electrons up to centimeter-scale distances.[21] Long-range electron transfer via microbial nanowire networks allows viable cells that are not in direct contact with an anode to contribute to electron flow.[6]

To date, the currency produced by bacterial nanowires is very low. Across a biofilm 7 micrometers thick, a current density of around 17 microamperes per square centimeter and a voltage of around 0.5 volts was reported.[23]

Other significant applications

Microbial nanowires of Shewanella and Geobacter have been shown to aid in bioremediation of uranium contaminated groundwater.[24] To demonstrate this, scientists compared and observed the concentration of uranium removed by piliated and nonpiliated strains of Geobacter. Through a series of controlled experiments, they were able to deduce that nanowire present strains were more effective at the mineralization of uranium as compared to nanowire absent mutants.[25]

Further significant application of bacterial nanowires can be seen in the bioelectronics industry.[7] With sustainable resources in mind, scientists have proposed the future use of biofilms of Geobacter as a platform for functional under water transistors and supercapacitors, capable of self-renewing energy.[21]

On 20 April 2020, researchers demonstrated a diffusive memristor fabricated from protein nanowires of the bacterium Geobacter sulfurreducens which functions at substantially lower voltages than the ones previously described and may allow the construction of artificial neurons which function at voltages of biological action potentials. Bacterial nanowires vary from traditionally utilized silicon nanowires by showing an increased degree of biocompatibility. More research is needed, but the memristors may eventually be used to directly process biosensing signals, for neuromorphic computing and/or direct communication with biological neurons.[26][27]

References

  1. ^ a b c Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (June 2005). "Extracellular electron transfer via microbial nanowires". Nature. 435 (7045): 1098–101. Bibcode:2005Natur.435.1098R. doi:10.1038/nature03661. PMID 15973408. S2CID 4425287.
  2. ^ a b c Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, et al. (July 2006). "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms". Proceedings of the National Academy of Sciences of the United States of America. 103 (30): 11358–63. Bibcode:2006PNAS..10311358G. doi:10.1073/pnas.0604517103. PMC 1544091. PMID 16849424.
  3. ^ a b c d e f g h i Nealson KH, Rowe AR (September 2016). "Electromicrobiology: realities, grand challenges, goals and predictions". Microbial Biotechnology. 9 (5): 595–600. doi:10.1111/1751-7915.12400. PMC 4993177. PMID 27506517.
  4. ^ a b Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, et al. (September 2014). "Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components". Proceedings of the National Academy of Sciences of the United States of America. 111 (35): 12883–8. Bibcode:2014PNAS..11112883P. doi:10.1073/pnas.1410551111. PMC 4156777. PMID 25143589.
  5. ^ a b Yalcin SE, O'Brien JP, Gu Y, Reiss K, Yi SM, Jain R, et al. (October 2020). "Electric field stimulates production of highly conductive microbial OmcZ nanowires". Nature Chemical Biology. 16 (10): 1136–1142. doi:10.1038/s41589-020-0623-9. PMC 7502555. PMID 32807967.
  6. ^ a b c Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (November 2006). "Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells". Applied and Environmental Microbiology. 72 (11): 7345–8. Bibcode:2006ApEnM..72.7345R. doi:10.1128/aem.01444-06. PMC 1636155. PMID 16936064.
  7. ^ a b Sure S, Ackland ML, Torriero AA, Adholeya A, Kochar M (December 2016). "Microbial nanowires: an electrifying tale". Microbiology. 162 (12): 2017–2028. doi:10.1099/mic.0.000382. PMID 27902405.
  8. ^ Wang F, Gu Y, O'Brien JP, Yi SM, Yalcin SE, Srikanth V, et al. (April 2019). "Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers". Cell. 177 (2): 361–369.e10. doi:10.1016/j.cell.2019.03.029. PMC 6720112. PMID 30951668.
  9. ^ El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, et al. (October 2010). "Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1". Proceedings of the National Academy of Sciences of the United States of America. 107 (42): 18127–31. Bibcode:2010PNAS..10718127E. doi:10.1073/pnas.1004880107. PMC 2964190. PMID 20937892.
  10. ^ Pirbadian S, El-Naggar MY (October 2012). "Multistep hopping and extracellular charge transfer in microbial redox chains". Physical Chemistry Chemical Physics. 14 (40): 13802–8. Bibcode:2012PCCP...1413802P. doi:10.1039/C2CP41185G. PMID 22797729.
  11. ^ Polizzi NF, Skourtis SS, Beratan DN (2012). "Physical constraints on charge transport through bacterial nanowires". Faraday Discussions. 155: 43–62, discussion 103–14. Bibcode:2012FaDi..155...43P. doi:10.1039/C1FD00098E. PMC 3392031. PMID 22470966.
  12. ^ Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, Tender LM (2011). "On the electrical conductivity of microbial nanowires and biofilms". Energy Environ Sci. 4 (11): 4366–4379. doi:10.1039/C1EE01753E.
  13. ^ Potter MC, Waller AD (1911-09-14). "Electrical effects accompanying the decomposition of organic compounds". Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. 84 (571): 260–276. doi:10.1098/rspb.1911.0073.
  14. ^ Myers CR, Nealson KH (June 1988). "Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor". Science. 240 (4857): 1319–21. Bibcode:1988Sci...240.1319M. doi:10.1126/science.240.4857.1319. PMID 17815852. S2CID 9662366.
  15. ^ Lovley DR, Phillips EJ (June 1988). "Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese". Applied and Environmental Microbiology. 54 (6): 1472–80. Bibcode:1988ApEnM..54.1472L. doi:10.1128/aem.54.6.1472-1480.1988. PMC 202682. PMID 16347658.
  16. ^ Kim B (1999). "Dynamic effects of learning capabilities and profit structures on the innovation competition". Optimal Control Applications and Methods. 20 (3): 127–144. doi:10.1002/(SICI)1099-1514(199905/06)20:3<127::AID-OCA650>3.0.CO;2-I. ISSN 1099-1514.
  17. ^ a b Rabaey K, Rozendal RA (October 2010). "Microbial electrosynthesis - revisiting the electrical route for microbial production". Nature Reviews. Microbiology. 8 (10): 706–16. doi:10.1038/nrmicro2422. PMID 20844557. S2CID 11417035.
  18. ^ a b c d Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, et al. (October 2016). "Extracellular electron transfer mechanisms between microorganisms and minerals". Nature Reviews. Microbiology. 14 (10): 651–62. doi:10.1038/nrmicro.2016.93. PMID 27573579. S2CID 20626915.
  19. ^ Kodesia, A.; Ghosh, M.; Chatterjee, A. (September 5, 2017). "Development of Biofilm Nanowires and Electrode for Efficient Microbial Fuel Cells (MFCs)". Thapar University Digital Repository (TuDR).
  20. ^ Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR (August 2011). "Tunable metallic-like conductivity in microbial nanowire networks". Nature Nanotechnology. 6 (9): 573–9. Bibcode:2011NatNa...6..573M. doi:10.1038/nnano.2011.119. PMID 21822253.
  21. ^ a b c Malvankar NS, Lovley DR (June 2012). "Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics". ChemSusChem. 5 (6): 1039–46. doi:10.1002/cssc.201100733. PMID 22614997.
  22. ^ Maruthupandy M, Anand M, Maduraiveeran G, Beevi AS, Priya RJ (September 2017). "Fabrication of CuO nanoparticles coated bacterial nanowire film for a high-performance electrochemical conductivity". Journal of Materials Science. 52 (18): 10766–78. Bibcode:2017JMatS..5210766M. doi:10.1007/s10853-017-1248-6. S2CID 103105219.
  23. ^ Liu X, Gao H, Ward JE, Liu X, Yin B, Fu T, et al. (February 2020). "Power generation from ambient humidity using protein nanowires". Nature. 578 (7796): 550–554. Bibcode:2020Natur.578..550L. doi:10.1038/s41586-020-2010-9. PMID 32066937.
  24. ^ Jiang S, Kim MG, Kim SJ, Jung HS, Lee SW, Noh DY, et al. (July 2011). "Bacterial formation of extracellular U(VI) nanowires". Chemical Communications. 47 (28): 8076–8. doi:10.1039/C1CC12554K. PMID 21681306.
  25. ^ Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G (September 2011). "Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism". Proceedings of the National Academy of Sciences of the United States of America. 108 (37): 15248–52. Bibcode:2011PNAS..10815248C. doi:10.1073/pnas.1108616108. PMC 3174638. PMID 21896750.
  26. ^ Fu T, Liu X, Gao H, Ward JE, Liu X, Yin B, et al. (April 2020). "Bioinspired bio-voltage memristors". Nature Communications. 11 (1): 1861. Bibcode:2020NatCo..11.1861F. doi:10.1038/s41467-020-15759-y. PMC 7171104. PMID 32313096.
  27. ^ "Researchers Unveil Electronics that Mimic the Human Brain in Efficient, Biological Learning". Office of News & Media Relations | UMass Amherst. Retrieved 2021-04-20.

Read other articles:

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الضحي الجرايح السفلى  - مديرية -  تقسيم إداري البلد  اليمن المحافظة محافظة الحديدة المديرية �...

 

 

Gloria GreyGrey c. 1920-anLahirMaria Dragomanovich(1909-10-23)23 Oktober 1909Portland, Oregon, A.S.Meninggal22 November 1947(1947-11-22) (umur 38)Los Angeles, California, A.S.MakamWestwood Village Memorial Park CemeteryPekerjaanAktrisSuami/istriRamón Romero ​(m. 1929)​Anak1 Gloria Grey (nee Maria Dragomanovich; 23 Oktober 1909 – 22 November 1947) adalah aktris layar dan panggung, serta sutradara asal Amerika Serikat, yang muncul terutama di ...

 

 

أميتيفيل    علم   الإحداثيات 40°40′18″N 73°24′54″W / 40.671666666667°N 73.415°W / 40.671666666667; -73.415  [1] تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى بابيلون  خصائص جغرافية  المساحة 6.39695 كيلومتر مربع6.41258 كيلومتر مربع (1 أبريل 2010)  ارتفاع 6 ...

For other uses, see Rash (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rash – news · newspapers · books · scholar · JSTOR (January 2008) (Learn how and when to remove this template message) This article about biology may be excessively human-centric. Please improve coverage for other spec...

 

 

Bingkek Entada phaseoloides Entada phaseoloides pod specimenTaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladSuperrosidaeKladrosidsKladfabidsOrdoFabalesFamiliFabaceaeSubfamiliMimosoideaeTribusMimoseaeGenusEntadaSpesiesEntada phaseoloides Merr., 1914 Tata namaBasionimLens phaseoloides (en) Sinonim taksonAcacia scandens (L.) Willd. Entada formosana Kaneh. Entada koshunensis Hayata & Kaneh. Entada rumphii Scheff. Entada scan...

 

 

Marquinhos Paraná Informasi pribadiTanggal lahir 20 Juli 1977 (umur 46)Tempat lahir BrasilPosisi bermain GelandangKarier senior*Tahun Tim Tampil (Gol)2007 Júbilo Iwata 2013-2015 Ventforet Kofu * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Marquinhos Paraná (lahir 20 Juli 1977) adalah pemain sepak bola asal Brasil. Karier Marquinhos Paraná pernah bermain untuk Júbilo Iwata dan Ventforet Kofu. Pranala luar (Jepang) Profil dan statistik di situs web resmi J. Le...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

 

Protective sheath in certain plants Schematic image of wheat coleoptile (above) and flag leaf (below) Young seedling breaks through the tip of the coleoptile (left). The majority of the tissue remains ungreening throughout the lifecycle (right). Coleoptile is the pointed protective sheath covering the emerging shoot in monocotyledons such as grasses in which few leaf primordia and shoot apex of monocot embryo remain enclosed. The coleoptile protects the first leaf as well as the growing stem ...

 

 

Questa voce sull'argomento reti televisive statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. USA Network Slogan Here for the Characters Data di lancio 27 settembre 1977 Editore NBC Universal Sito usanetwork.com Diffusione Satellite Digitale canale 242 di DirecTV Via cavo Analogico NTSC, in USA Digitale DVB-C, in USA «Characters welcome.» (Tagline della rete televisiva) USA Network, a volte nota anche solo come USA, è una rete televisiva ...

Lokasi kanton ini di Bosnia-Herzegovina Lambang Kanton Posavina Kanton Posavina adalah salah satu dari 10 kanton di Federasi Bosnia dan Herzegovina. Kanton ini adalah yang terkecil dengan luas wilayah hanya 325 km² (hanya 50% lebih besar daripada Distrik Brčko). Sedangkan penduduknya adalah 43.588 jiwa (2003), terutama dari sukubangsa Kroasia.Kanton ini dibagi menjadi kota-kota munisipaliti Domaljevac, Odžak, dan Orašje. Ibu kota kanton ini adalah Orašje yang memiliki penduduk sekitar 3....

 

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

 

Village in Greater Poland Voivodeship, PolandMorzewoVillageChurch of the Transfiguration in MorzewoMorzewoCoordinates: 53°5′0″N 16°53′34″E / 53.08333°N 16.89278°E / 53.08333; 16.89278Country PolandVoivodeshipGreater PolandCountyPiłaGminaKaczoryPopulation620Time zoneUTC+01:00 (CET) • Summer (DST)UTC+02:00 (CEST)Vehicle registrationPP Morzewo [mɔˈʐɛvɔ] is a village in the administrative district of Gmina Kaczory, within Piła County, Gr...

2006 British film by Jereny Brock This article is about the film. For driver training, see Driver's education. Driving LessonsOriginal posterDirected byJeremy BrockWritten byJeremy BrockProduced byJulia ChasmanStarring Julie Walters Rupert Grint Laura Linney CinematographyDavid KatznelsonEdited byTrevor WaiteMusic byClive Carroll John RenbournProductioncompaniesContentFilm Rubber Tree Plant UK Film CouncilDistributed byPalisades TartanRelease date 8 September 2006 (2006-09-08) ...

 

 

Not to be confused with Spokane–Coeur d'Alene combined statistical area. Metropolitan Statistical Area in the United StatesSpokane Metropolitan AreaMetropolitan Statistical AreaSpokane–Spokane Valley, WAMetropolitan Statistical AreaFrom top: Downtown Spokane from the south, Spokane Valley from the airMap of Spokane–Spokane Valley–Coeur d'Alene, WA–ID CSA   City of Spokane, WA   Spokane–Spokane Valley, WA MSA   City of Coeur d'Alene, ID   Coe...

 

 

Musical instrument played using a keyboard The piano, a common keyboard instrument Hammond organ with part of a Leslie speaker shown Bandoneon A keyboard instrument is a musical instrument played using a keyboard, a row of levers that are pressed by the fingers. The most common of these are the piano, organ, and various electronic keyboards, including synthesizers and digital pianos. Other keyboard instruments include celestas, which are struck idiophones operated by a keyboard, and carillons...

Protein-coding gene in the species Homo sapiens CYP2A6Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes4RUI, 1Z10, 1Z11, 2FDU, 2FDV, 2FDW, 2FDY, 3EBS, 3T3Q, 3T3R, 4EJJIdentifiersAliasesCYP2A6, CPA6, CYP2A, CYP2A3, CYPIIA6, P450C2A, P450PB, cytochrome P450 family 2 subfamily A member 6External IDsOMIM: 122720; MGI: 88597; HomoloGene: 85917; GeneCards: CYP2A6; OMA:CYP2A6 - orthologsGene location (Human)Chr.Chromosome 19 (human)[1]Band19q13.2Start40,843,541 bp[1&...

 

 

Pendle Hill, Inggris, tempat tonggak sejarah Kaum Quaker dari Perkumpulan Agama Sahabat George Fox berperan penting dalam berdirinya Perkumpulan Agama Sahabat Kaum Quaker atau Perkumpulan Agama Sahabat (bahasa Inggris: Religious Society of Friends) adalah suatu kelompok Kristen Protestan, yang muncul pada abad ke-17 di Inggris. Pendiri Perkumpulan Agama Sahabat adalah George Fox (1624-1691), putra seorang tukang tenun yang lahir di Leicestershire, Inggris. Konon, setelah mendengar suatu s...

 

 

Monarchs of theIberian Peninsula al-Andalus Almohads Almoravids Aragon (Family tree) Asturias Castile (Family tree) Catalonia Córdoba: Emirate, Caliphate Galicia Granada León Majorca Navarre (Family tree) Portugal (Family tree) Spain: Medieval, Modern (Family tree) Suebi Taifas Valencia Viguera Visigoths This is a list of the rulers of the Kingdom of Asturias, a kingdom in the Iberian peninsula during the Early Middle Ages. It originated as a refuge for Visigothic nobles following the conq...

2-й Волконский переулок Общая информация Страна Россия Город Москва Округ ЦАО Район Тверской Протяжённость 240 м Метро 10 Достоевская09 Цветной бульвар10 Трубная Прежние названия Гужевский переулок Почтовый индекс 127473  Медиафайлы на Викискладе Второ́й Волко́нский переу...

 

 

斯韦特兰娜·科列斯尼琴科出生1993年9月20日  (30歲)加特契纳 職業花样游泳运动员、游泳运动员  斯韦特兰娜·康斯坦丁诺芙娜·科列斯尼琴科(俄語:Светлана Константиновна Колесниченко,1993年9月20日—),俄罗斯花样游泳运动员,2016年夏季奥运会集体金牌得主、2020年夏季奥运会双人和集体金牌得主。[1] 参考资料 ^ Svetlana KOLESNICHENKO | Resu...