An atomic battery, nuclear battery, radioisotope battery or radioisotope generator uses energy from the decay of a radioactive isotope to generate electricity. Like a nuclear reactor, it generates electricity from nuclear energy, but it differs by not using a chain reaction. Although commonly called batteries, atomic batteries are technically not electrochemical and cannot be charged or recharged. Although they are very costly, they have extremely long lives and high energy density, so they are typically used as power sources for equipment that must operate unattended for long periods, such as spacecraft, pacemakers, underwater systems, and automated scientific stations in remote parts of the world.[1][2][3]
Nuclear batteries began in 1913, when Henry Moseley first demonstrated a current generated by charged-particle radiation. In the 1950s and 1960s, this field of research got much attention for applications requiring long-life power sources for spacecraft. In 1954, RCA researched a small atomic battery for small radio receivers and hearing aids.[4] Since RCA's initial research and development in the early 1950s, many types and methods have been designed to extract electrical energy from nuclear sources. The scientific principles are well known, but modern nano-scale technology and new wide-bandgap semiconductors have allowed the making of new devices and interesting material properties not previously available.
Nuclear batteries can be classified by their means of energy conversion into two main groups: thermal converters and non-thermal converters. The thermal types convert some of the heat generated by the nuclear decay into electricity; an example is the radioisotope thermoelectric generator (RTG), often used in spacecraft. The non-thermal converters, such as betavoltaic cells, extract energy directly from the emitted radiation, before it is degraded into heat; they are easier to miniaturize and do not need a thermal gradient to operate, so they can be used in small machines.
Atomic batteries usually have an efficiency of 0.1–5%. High-efficiency betavoltaic devices can reach 6–8% efficiency.[5]
Thermal conversion
Thermionic conversion
A thermionic converter consists of a hot electrode, which thermionically emits electrons over a space-charge barrier to a cooler electrode, producing a useful power output. Caesium vapor is used to optimize the electrode work functions and provide an ion supply (by surface ionization) to neutralize the electron space charge.[6]
A radioisotope thermoelectric generator (RTG) uses thermocouples. Each thermocouple is formed from two wires of different metals (or other materials). A temperature gradient along the length of each wire produces a voltage gradient from one end of the wire to the other; but the different materials produce different voltages per degree of temperature difference. By connecting the wires at one end, heating that end but cooling the other end, a usable, but small (millivolts), voltage is generated between the unconnected wire ends. In practice, many are connected in series (or in parallel) to generate a larger voltage (or current) from the same heat source, as heat flows from the hot ends to the cold ends. Metal thermocouples have low thermal-to-electrical efficiency. However, the carrier density and charge can be adjusted in semiconductor materials such as bismuth telluride and silicon germanium to achieve much higher conversion efficiencies.[7]
Thermophotovoltaic conversion
Thermophotovoltaic (TPV) cells work by the same principles as a photovoltaic cell, except that they convert infrared light (rather than visible light) emitted by a hot surface, into electricity. Thermophotovoltaic cells have an efficiency slightly higher than thermoelectric couples and can be overlaid on thermoelectric couples, potentially doubling efficiency. The University of HoustonTPV Radioisotope Power Conversion Technology development effort is aiming at combining thermophotovoltaic cells concurrently with thermocouples to provide a 3- to 4-fold improvement in system efficiency over current thermoelectric radioisotope generators. [citation needed]
Non-thermal converters extract energy from emitted radiation before it is degraded into heat. Unlike thermoelectric and thermionic converters their output does not depend on the temperature difference. Non-thermal generators can be classified by the type of particle used and by the mechanism by which their energy is converted.
Electrostatic conversion
Energy can be extracted from emitted charged particles when their charge builds up in a conductor, thus creating an electrostatic potential. Without a dissipation mode the voltage can increase up to the energy of the radiated particles, which may range from several kilovolts (for beta radiation) up to megavolts (alpha radiation). The built up electrostatic energy can be turned into usable electricity in one of the following ways.
Direct-charging generator
A direct-charging generator consists of a capacitor charged by the current of charged particles from a radioactive layer deposited on one of the electrodes. Spacing can be either vacuum or dielectric. Negatively charged beta particles or positively charged alpha particles, positrons or fission fragments may be utilized. Although this form of nuclear-electric generator dates back to 1913, few applications have been found in the past for the extremely low currents and inconveniently high voltages provided by direct-charging generators. Oscillator/transformer systems are employed to reduce the voltages, then rectifiers are used to transform the AC power back to direct current.
English physicist H. G. J. Moseley constructed the first of these. Moseley's apparatus consisted of a glass globe silvered on the inside with a radium emitter mounted on the tip of a wire at the center. The charged particles from the radium created a flow of electricity as they moved quickly from the radium to the inside surface of the sphere. As late as 1945 the Moseley model guided other efforts to build experimental batteries generating electricity from the emissions of radioactive elements.
Electromechanical atomic batteries use the buildup of charge between two plates to pull one bendable plate towards the other, until the two plates touch, discharge, equalizing the electrostatic buildup, and spring back. The mechanical motion produced can be used to produce electricity through flexing of a piezoelectric material or through a linear generator. Milliwatts of power are produced in pulses depending on the charge rate, in some cases multiple times per second (35 Hz).[9]
Radiovoltaic conversion
A radiovoltaic (RV) device converts the energy of ionizing radiation directly into electricity using a semiconductor junction, similar to the conversion of photons into electricity in a photovoltaic cell. Depending on the type of radiation targeted, these devices are called alphavoltaic (AV, αV), betavoltaic (BV, βV) and/or gammavoltaic (GV, γV). Betavoltaics have traditionally received the most attention since (low-energy) beta emitters cause the least amount of radiative damage, thus allowing a longer operating life and less shielding. Interest in alphavoltaic and (more recently) gammavoltaic devices is driven by their potential higher efficiency.
Alphavoltaic conversion
Alphavoltaic devices use a semiconductor junction to produce electrical energy from energetic alpha particles.[10][11]
Betavoltaic devices are particularly well-suited to low-power electrical applications where long life of the energy source is needed, such as implantable medical devices or military and space applications.[12]
The Chinese startup Betavolt claimed in January 2024 to have a miniature device in the pilot testing stage.[13] It is allegedly generating 100 microwatts of power and a voltage of 3V and has a lifetime of 50 years without any need for charging or maintenance.[13] Betavolt claims it to be the first such miniaturised device ever developed.[13]
It gains its energy from the isotope nickel-63, held in a module the size of a very small coin.[14]
As it is consumed, the nickel-63 decays into stable, non-radioactive isotopes of copper, which pose no environmental threat.[14] It contains a thin wafer of nickel-63 providing beta particle electrons sandwiched between two thin crystallographic diamond semiconductor layers.[15][16]
Gammavoltaic conversion
Gammavoltaic devices use a semiconductor junction to produce electrical energy from energetic gamma particles (high-energy photons). They have only been considered in the 2010s[17][18][19][20] but were proposed as early as 1981.[21]
A gammavoltaic effect has been reported in perovskite solar cells.[17] Another patented design involves scattering of the gamma particle until its energy has decreased enough to be absorbed in a conventional photovoltaic cell.[18] Gammavoltaic designs using diamond and Schottky diodes are also being investigated.[19][20]
In a radiophotovoltaic (RPV) device the energy conversion is indirect: the emitted particles are first converted into light using a radioluminescent material (a scintillator or phosphor), and the light is then converted into electricity using a photovoltaic cell. Depending on the type of particle targeted, the conversion type can be more precisely specified as alphaphotovoltaic (APV or α-PV),[22]betaphotovoltaic (BPV or β-PV)[23] or gammaphotovoltaic (GPV or γ-PV).[24]
Radiophotovoltaic conversion can be combined with radiovoltaic conversion to increase the conversion efficiency.[25]
Pacemakers
Medtronic and Alcatel developed a plutonium-powered pacemaker, the Numec NU-5, powered by a 2.5 Ci slug of plutonium 238, first implanted in a human patient in 1970. The 139 Numec NU-5 nuclear pacemakers implanted in the 1970s are expected to never need replacing, an advantage over non-nuclear pacemakers, which require surgical replacement of their batteries every 5 to 10 years. The plutonium "batteries" are expected to produce enough power to drive the circuit for longer than the 88-year halflife of the plutonium-238.[26][27][28][29]
The last of these units was implanted in 1988, as lithium-powered pacemakers, which had an expected lifespan of 10 or more years without the disadvantages of radiation concerns and regulatory hurdles, made these units obsolete.
Betavoltaic batteries are also being considered as long-lasting power sources for lead-free pacemakers.[30]
Radioisotopes used
Atomic batteries use radioisotopes that produce low energy beta particles or sometimes alpha particles of varying energies. Low energy beta particles are needed to prevent the production of high energy penetrating Bremsstrahlung radiation that would require heavy shielding. Radioisotopes such as tritium, nickel-63, promethium-147, and technetium-99 have been tested. Plutonium-238, curium-242, curium-244 and strontium-90 have been used.[31] Besides the nuclear properties of the used isotope, there are also the issues of chemical properties and availability. A product deliberately produced via neutron irradiation or in a particle accelerator is more difficult to obtain than a fission product easily extracted from spent nuclear fuel.
Plutonium-238 must be deliberately produced via neutron irradiation of Neptunium-237 but it can be easily converted into a stable plutonium oxide ceramic. Strontium-90 is easily extracted from spent nuclear fuel but must be converted into the perovskite form strontium titanate to reduce its chemical mobility, cutting power density in half. Caesium-137, another high yield nuclear fission product, is rarely used in atomic batteries because it is difficult to convert into chemically inert substances. Another undesirable property of Cs-137 extracted from spent nuclear fuel is that it is contaminated with other isotopes of Caesium which reduce power density further.
Micro-batteries
In the field of microelectromechanical systems (MEMS), nuclear engineers at the University of Wisconsin, Madison have explored the possibilities of producing minuscule batteries which exploit radioactive nuclei of substances such as polonium or curium to produce electric energy.[citation needed] As an example of an integrated, self-powered application, the researchers have created an oscillating cantilever beam that is capable of consistent, periodic oscillations over very long time periods without the need for refueling. Ongoing work demonstrate that this cantilever is capable of radio frequency transmission, allowing MEMS devices to communicate with one another wirelessly.
These micro-batteries are very light and deliver enough energy to function as power supply for use in MEMS devices and further for supply for nanodevices.[32]
The radiation energy released is transformed into electric energy, which is restricted to the area of the device that contains the processor and the micro-battery that supplies it with energy.[33]: 180–181
^McCoy, J.C (October 1995). An overview of the Radioisotope Thermoelectric Generator Transportation System Program. STAIF 96: space technology and applications international forum, Albuquerque, NM (United States), 7-11 Jan 1996. OSTI168371.
^"贝塔伏特公司成功研制民用原子能电池" ('Betavolt successfully develops atomic energy battery for civilian use'), on Betavolt website (in Chinese). Accessed 17 January 2024.
Pour les articles homonymes, voir Shunt. En électricité, un shunt est un dispositif de très faible impédance relative à la charge qui permet au courant de passer d'un point à un autre d'un circuit électrique en utilisant très peu d’énergie. Il peut désigner : un connecteur : pour réaliser une liaison entre deux points d'un circuit (exemple : bornier d'un moteur triphasé étoile-triangle) ; un shunt de mesure : une résistance permettant de mesurer le co...
Denny SakrieDenny Sakrie ketika bekerja sebagai penyiar radioLahirHamdhan Syukrie(1963-07-14)14 Juli 1963Ambon, Maluku, IndonesiaMeninggal3 Januari 2015(2015-01-03) (umur 51)Tangerang Selatan, Banten, IndonesiaPekerjaanPengamat musikPemusik Hamdhan Syukrie (14 Juli 1963 – 3 Januari 2015), lebih dikenal dengan nama Denny Sakrie, adalah seorang penulis dan pengamat musik Indonesia. Ia mengawali kariernya sebagai penulis artikel musik sejak duduk di bangku SMP (pada 1979) d...
Les Abrets en Dauphiné Mairie des Abrets en Dauphiné en mars 2019. Administration Pays France Région Auvergne-Rhône-Alpes Département Isère Arrondissement La Tour-du-Pin Intercommunalité Communauté de communes Les Vals du Dauphiné Maire Mandat Benjamin Gastaldello (DVC) 2020-2026 Code postal 38490 Code commune 38001 Démographie Populationmunicipale 6 576 hab. (2021) Densité 240 hab./km2 Population agglomération 10 576 hab. (2021) Géographie Coordonnées ...
This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (April 2022) Expendable launch system by SpaceX Falcon 1Falcon 1 rocketFunctionOrbital launch vehicleManufacturerSpaceXCountry of originUnited StatesProject costUS$90 millionCost per launchUS$7 millionSizeHeight21 m (69 ft)Diameter1.7 m (5.6 ft)Mass28 t (62,000 lb)Stages2...
Declaration of war in World War I Declaration of War with GermanyLong titleJoint Resolution Declaring that a State of War exists between the Imperial German Government and the Government and the people of the United States and making provision to prosecute the same.Enacted bythe 65th United States CongressEffectiveApril 6, 1917CitationsPublic lawPub. L.Tooltip Public Law (United States) 65–1Statutes at Large40 Stat. 1Legislative historyIntroduced in the Senate as S.J.Res...
Tepung pati yang dimodifikasi Tepung pati yang dimodifikasi, (dalam bahasa Inggris: Modified starch) terkadang disebut juga Tepung pati deratif, adalah tepung pati murni yang diproses secara fisika, enzimatik atau kimiawi, untuk mengubah sifatnya.[1] Tepung pati yang telah dimodifikasi ini digunakan pada hampir semua aplikasi tepung pati, seperti dalam produk makanan sebagai bahan pengental, stabilisator atau pengemulsi; dalam bidang farmasi digunakan sebagai disintegran, atau sebagai...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: SMP Negeri 1 Madiun – berita · surat kabar · buku · cendekiawan · JSTOR SMP Negeri 1 MadiunInformasiDidirikan18 September 1942 (umur 81), berdasarkan arsip buku induk siswa yang pertama, sebenarnya ...
This biography of a living person relies too much on references to primary sources. Please help by adding secondary or tertiary sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately, especially if potentially libelous or harmful.Find sources: Jackie Estrada – news · newspapers · books · scholar · JSTOR (February 2008) (Learn how and when to remove this message) American, known for association...
Monument by José Grases Riera in Madrid, Spain Monument to Alfonso XII40°25′02″N 3°40′59″W / 40.41733°N 3.68306°W / 40.41733; -3.68306LocationBuen Retiro Park, Madrid, SpainDesignerJosé Grases RieraMaterialMarble and bronzeLength86 metres (282 ft)Width58 metres (190 ft)Height30 metres (98 ft)Opening date1922 The Monument to Alfonso XII (Spanish: Monumento a Alfonso XII) is located in Buen Retiro Park (El Retiro), Madrid, Spain. The mon...
Comune in Calabria, ItalyAcquaformosaComuneComune di AcquaformosaLocation of Acquaformosa AcquaformosaLocation of Acquaformosa in ItalyShow map of ItalyAcquaformosaAcquaformosa (Calabria)Show map of CalabriaCoordinates: 39°43′N 16°06′E / 39.717°N 16.100°E / 39.717; 16.100CountryItalyRegionCalabriaProvinceCosenza (CS)Government • MayorGennaro CapparelliArea[1] • Total22.71 km2 (8.77 sq mi)Elevation756 m (2,480&...
State highway in central New Hampshire, US NH 11 redirects here. For the highway in India, see National Highway 11 (India). New Hampshire Route 11Map of central New Hampshire with NH 11 highlighted in redRoute informationMaintained by NHDOTLength108.223 mi[1] (174.168 km)Major junctionsWest end VT 11 in Springfield, VTMajor intersections I-89 in New London US 4 in Andover US 3 / NH 3A / NH 127 in Franklin I-93 in Tilton US...
Philip La FollettePhilip La Follette setelah ayahnya wafat pada 1925. Gubernur Wisconsin 27 dan 29Masa jabatan7 Januari 1935 – 2 Januari 1939WakilThomas J. O'MalleyLowongHenry A. GundersonLowongHerman L. EkernPendahuluAlbert G. SchmedemanPenggantiJulius P. HeilMasa jabatan5 Januari 1931 – 2 Januari 1933WakilHenry A. HuberPendahuluWalter J. Kohler, Sr.PenggantiAlbert G. Schmedeman Informasi pribadiLahirPhilip Fox La Follette(1897-05-08)8 Mei 1897Madison, Wisconsin, AS...
У этого термина существуют и другие значения, см. Чёрный орёл (значения). Чёрный орёл Объект 640 Классификация основной танк Боевая масса, т 48-49 Компоновочная схема альтернативная Экипаж, чел. 3 История Разработчик ОАО «КБТМ» Производитель Количество выпущенных, шт. 2 Основн...
American musician (born 1988) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Bethany Dillon – news · newspapers · books · scholar · JSTOR (September 2013) (Learn how and when to remove this mes...
artikel ini tidak memiliki pranala ke artikel lain. Tidak ada alasan yang diberikan. Bantu kami untuk mengembangkannya dengan memberikan pranala ke artikel lain secukupnya. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Pohon Merkle atau lebih populer dalam istilah Bahasa Inggris, Merkle tree atau hash tree, dalam kriptografi dan sains komputer adalah sebuah pohon yang setiap daun (simpul)nya dilabeli dengan hash kriptografis dari sebuah blok data, sementara setiap simpu...