Arif Peçenek
|
Read other articles:
Gereja YesuitGereja Paroki Santo Igantius dari Loyola dan Santo Fransiskus XaveriusJerman: Jesuitenkirchecode: de is deprecated Gereja Yesuit, MannheimLokasiMannheimNegara JermanDenominasiGereja Katolik RomaSejarahDedikasiYesuitArsitekturStatusgereja parokiStatus fungsionalAktifTipe arsitekturGereja Gereja Yesuit (Jerman: Jesuitenkirchecode: de is deprecated ) yang bernama resmi Gereja Santo Igantius dari Loyola dan Santo Fransiskus Xaverius adalah sebuah gereja paroki Katolik yang terle...
本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...
Definisi IUPAC Misel: Partikel dengan dimensi koloid yang terdapat dalam kesetimbangan denganmolekul atau ion dalam larutan di mana ia terbentuk.[1][2] Misel (polimer): Swarakit teratur yang terbentuk dalam suatu cairan danterdiri dari makromolekul amfifilik, secara umum di-atau tri-blok kopolimer amfifilik yang dibuat dari blok solvofilik dan solvofobik. Catatan 1: Suatu perilaku amfifilik dapat diamati pada air dan suatu pelarutorganik atau antara dua pelarut organik. Catat...
Singapore Pro League seasonFootball league seasonS. LeagueSeason2004ChampionsTampines Rovers1st S.League titleAFC CupTampines Rovers(S.League and Singapore Cup winners)Home United(S.League runners-up)Matches played135Goals scored513 (3.8 per match)Top goalscorerEgmar Goncalves (30)Biggest home winTampines Rovers 9-0 Tanjong Pagar United(16 March 2004)Biggest away winBalestier Khalsa 0-6 Tanjong Pagar United(19 August 2004)Highest scoringSingapore Armed Forces 6-6 Young Lions(15 April 200...
Questa voce sull'argomento calciatori slovacchi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Štefan Rusnák Nazionalità Slovacchia Altezza 180 cm Calcio Ruolo Attaccante Termine carriera 2004 Carriera Squadre di club1 1989-1991 Dukla B.B.30 (15)1991-1992 Slavia Praga19 (2)1992-1993→ Bohemians ČKD Praga8 (0)1993-1994 Slavia Praga40 (5)1994-1997 Slovan Bratislava60...
Questa voce sull'argomento modelli statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Christiane Martel e Ugo Tognazzi nel 1959 Christiane Martel, nata Christiane Magnani (Piennes, 18 gennaio 1936), è una modella francese, incoronata Miss Universo 1953. Biografia Christiane Martel visse a lungo a Châtellerault, ove vinse anche il titolo di Miss Châtellerault 1952. È stata la seconda Miss Universo nella storia del concorso, in rappresenta...
Political party in Japan Happiness Realization Party 幸福実現党LeaderHiroko Matsune (a.k.a. Ryoko Shaku [ja])PresidentVacantChairmanHironori MatsushimaSecretaryHironori MatsushimaSpokespersonHiroko NanamiSecretary generalTadahiko SaitoFounderRyuho OkawaFounded23 May 2009 (2009-05-23)Headquarters6th floor of Utopia Activity Promotion Hall, Akasaka 2-10-8, Minato Ward, Tokyo, JapanIdeologyRadical conservatism[1]Political positionRight-wing[...
1972 book by Del Martin and Phyllis Lyon Lesbian/Woman Cover of the first editionAuthorsDel Martin and Phyllis LyonCountryUnited StatesLanguageEnglishSubjectLesbian feminismPublisherGlide PublicationsPublication date1972Media typePrint (Hardcover and Paperback)Pages283ISBN978-0553235975OCLC506556 Lesbian/Woman (1972; second edition 1991) is a work by the feminist and gay rights activists Del Martin and Phyllis Lyon, in which the authors discuss what it means to be a lesbian. The book was...
This list of tallest buildings in Incheon ranks skyscrapers in the South Korean city of Incheon by height. Tallest buildings Only buildings over 150m (as determined by the Council on Tall Buildings and Urban Habitat) are included. Rank Name Image Heightm (ft) Floors Year District Notes 1 Northeast Asia Trade Tower 305 m (1,001 ft) 68 2011 Yeonsu District [1][2][3] 2 Songdo The Sharp First World Tower 1 235 m (771 ft) 65 2009 Yeonsu District [4&...
Mountain in China FanjingshanThe Red Cloud Golden Peak (New Golden Peak) of FanjingshanHighest pointElevation2,570 m (8,430 ft)Coordinates27°53′44″N 108°40′48″E / 27.89555556°N 108.68°E / 27.89555556; 108.68NamingEnglish translationMountain of the Pure Land of BrahmaLanguage of nameChineseGeographyFanjingshanTongren, Guizhou, China UNESCO World Heritage SiteOfficial nameFanjingshanTypeNaturalCriteria(x)Designated2018 (42nd session)Reference...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
Zachary Brault-Guillard Nazionalità Canada Altezza 171 cm Peso 66 kg Calcio Ruolo Difensore Squadra svincolato CarrieraGiovanili 2011-2015 Olympique LioneSquadre di club1 2016-2018 Olympique Lione 217 (1)2019-2023 CF Montréal109 (7)Nazionale 2017 Canada U-203 (0)2018- Canada9 (1) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito. Statistiche aggiornate al 1° dicembre 2023 Mod...
此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...
كأس ألمانيا 2002–03 تفاصيل الموسم كأس ألمانيا النسخة 60 البلد ألمانيا المنظم الاتحاد الألماني لكرة القدم البطل بايرن ميونخ مباريات ملعوبة 63 [1] عدد المشاركين 64 أهداف مسجلة 241 [1] كأس ألمانيا 2001–02 كأس ألمانيا 2003–04 تعديل مصدري - تعديل ...
City in Riverside County Palm Springs redirects here. For other uses, see Palm Springs (disambiguation). City in California, United StatesPalm SpringsCity FlagSealLocation within Riverside CountyPalm SpringsLocation within CaliforniaShow map of CaliforniaPalm SpringsLocation within the United StatesShow map of the United StatesCoordinates: 33°49′49″N 116°32′43″W / 33.83028°N 116.54528°W / 33.83028; -116.54528[1]CountryUnited StatesStateCaliforniaCou...
African American publisher and lawyer Robert Sengstacke AbbottAbbott circa 1919Born(1870-12-24)December 24, 1870St. Simons, Georgia, U.S.DiedFebruary 29, 1940(1940-02-29) (aged 69)[1]Chicago, Illinois, U.S.Resting placeLincoln Cemetery(Blue Island, Illinois)Alma materHampton UniversityKent College of LawOccupationsLawyerNewspaper publisherEditorYears active1901–1940Known forFounder and publisher of The Chicago Defender newspaper and the Bud Billiken Parade and Pi...
By the Time It Gets DarkPoster filmNama lainThaiดาวคะนอง SutradaraAnocha SuwichakornpongProduserLee ChatametikoolBenjawan SomsinSoros SukhumAnocha SuwichakornpongDitulis olehAnocha SuwichakornpongPemeranArak AmornsupasiriApinya SakuljaroensukAchtara SuwanVisra Vichit-VadakanPenata musikWuttipong LeetrakulSinematograferMing-Kai LeungPenyuntingLee ChatametikoolMachima UngsriwongTanggal rilis 10 Agustus 2016 (2016-08-10) (Locarno) 8 Desember 2016 (2016-1...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (June 2012) (Learn how and when to remove this message) This article needs additional citations for verificat...
Japanese samurai and warlord (1534–1582) Nobunaga redirects here. For the name, see Nobunaga (name). In this Japanese name, the surname is Oda. Oda NobunagaSenior First Rank織田信長Portrait of Oda Nobunaga (1583, in Chōkō-ji, Important Cultural Property)Minister of the Right(Udaijin)In office1577[1][2] – 1578[1][2]Posthumous promotion to Chancellor of the Realm (Daijō-daijin) in 1582.[3]MonarchEmperor ŌgimachiHead of Oda clanIn offi...
Type of (mathematical) permutation with no fixed element For other uses, see Cyclic (mathematics). In mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle.[1][2] In some cases, cyclic permutations are referred to as cycles;[3] if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in addition to at most one non-trivial ...