Approximate entropy

In statistics, an approximate entropy (ApEn) is a technique used to quantify the amount of regularity and the unpredictability of fluctuations over time-series data.[1] For example, consider two series of data:

Series A: (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...), which alternates 0 and 1.
Series B: (0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, ...), which has either a value of 0 or 1, chosen randomly, each with probability 1/2.

Moment statistics, such as mean and variance, will not distinguish between these two series. Nor will rank order statistics distinguish between these series. Yet series A is perfectly regular: knowing a term has the value of 1 enables one to predict with certainty that the next term will have the value of 0. In contrast, series B is randomly valued: knowing a term has the value of 1 gives no insight into what value the next term will have.

Regularity was originally measured by exact regularity statistics, which has mainly centered on various entropy measures.[1] However, accurate entropy calculation requires vast amounts of data, and the results will be greatly influenced by system noise,[2] therefore it is not practical to apply these methods to experimental data. ApEn was first proposed (under a different name) by A. Cohen and I. Procaccia,[3] as an approximate algorithm to compute an exact regularity statistic, Kolmogorov–Sinai entropy, and later popularized by Steve M. Pincus. ApEn was initially used to analyze chaotic dynamics and medical data, such as heart rate,[1] and later spread its applications in finance,[4] physiology,[5] human factors engineering,[6] and climate sciences.[7]

Algorithm

A comprehensive step-by-step tutorial with an explanation of the theoretical foundations of Approximate Entropy is available.[8] The algorithm is:

Step 1
Assume a time series of data . These are raw data values from measurements equally spaced in time.
Step 2
Let be a positive integer, with , which represents the length of a run of data (essentially a window).
Let be a positive real number, which specifies a filtering level.
Let .
Step 3
Define for each where . In other words, is an -dimensional vector that contains the run of data starting with .
Define the distance between two vectors and as the maximum of the distances between their respective components, given by
for .
Step 4
Define a count as
for each where . Note that since takes on all values between 1 and , the match will be counted when (i.e. when the test subsequence, , is matched against itself, ).
Step 5
Define
where is the natural logarithm, and for a fixed , , and as set in Step 2.
Step 6
Define approximate entropy () as
Parameter selection
Typically, choose or , whereas depends greatly on the application.

An implementation on Physionet,[9] which is based on Pincus,[2] use instead of in Step 4. While a concern for artificially constructed examples, it is usually not a concern in practice.

Example

Illustration of the Heart Rate Sequence

Consider a sequence of samples of heart rate equally spaced in time:

Note the sequence is periodic with a period of 3. Let's choose and (the values of and can be varied without affecting the result).

Form a sequence of vectors:

Distance is calculated repeatedly as follows. In the first calculation,

which is less than .

In the second calculation, note that , so

which is greater than .

Similarly,

The result is a total of 17 terms such that . These include . In these cases, is

Note in Step 4, for . So the terms such that include , and the total number is 16.

At the end of these calculations, we have

Then we repeat the above steps for . First form a sequence of vectors:

By calculating distances between vector , we find the vectors satisfying the filtering level have the following characteristic:

Therefore,

At the end of these calculations, we have

Finally,

The value is very small, so it implies the sequence is regular and predictable, which is consistent with the observation.

Python implementation

import math


def approx_entropy(time_series, run_length, filter_level) -> float:
    """
    Approximate entropy

    >>> import random
    >>> regularly = [85, 80, 89] * 17
    >>> print(f"{approx_entropy(regularly, 2, 3):e}")
    1.099654e-05
    >>> randomly = [random.choice([85, 80, 89]) for _ in range(17*3)]
    >>> 0.8 < approx_entropy(randomly, 2, 3) < 1
    True
    """

    def _maxdist(x_i, x_j):
        return max(abs(ua - va) for ua, va in zip(x_i, x_j))

    def _phi(m):
        n = time_series_length - m + 1
        x = [
            [time_series[j] for j in range(i, i + m - 1 + 1)]
            for i in range(time_series_length - m + 1)
        ]
        counts = [
            sum(1 for x_j in x if _maxdist(x_i, x_j) <= filter_level) / n for x_i in x
        ]
        return sum(math.log(c) for c in counts) / n

    time_series_length = len(time_series)

    return abs(_phi(run_length + 1) - _phi(run_length))


if __name__ == "__main__":
    import doctest

    doctest.testmod()

MATLAB implementation

Interpretation

The presence of repetitive patterns of fluctuation in a time series renders it more predictable than a time series in which such patterns are absent. ApEn reflects the likelihood that similar patterns of observations will not be followed by additional similar observations.[10] A time series containing many repetitive patterns has a relatively small ApEn; a less predictable process has a higher ApEn.

Advantages

The advantages of ApEn include:[2]

  • Lower computational demand. ApEn can be designed to work for small data samples ( points) and can be applied in real time.
  • Less effect from noise. If data is noisy, the ApEn measure can be compared to the noise level in the data to determine what quality of true information may be present in the data.

Limitations

The ApEn algorithm counts each sequence as matching itself to avoid the occurrence of in the calculations. This step might introduce bias in ApEn, which causes ApEn to have two poor properties in practice:[11]

  1. ApEn is heavily dependent on the record length and is uniformly lower than expected for short records.
  2. It lacks relative consistency. That is, if ApEn of one data set is higher than that of another, it should, but does not, remain higher for all conditions tested.

Applications

ApEn has been applied to classify electroencephalography (EEG) in psychiatric diseases, such as schizophrenia,[12] epilepsy,[13] and addiction.[14]

See also

References

  1. ^ a b c Pincus, S. M.; Gladstone, I. M.; Ehrenkranz, R. A. (1991). "A regularity statistic for medical data analysis". Journal of Clinical Monitoring and Computing. 7 (4): 335–345. doi:10.1007/BF01619355. PMID 1744678. S2CID 23455856.
  2. ^ a b c Pincus, S. M. (1991). "Approximate entropy as a measure of system complexity". Proceedings of the National Academy of Sciences. 88 (6): 2297–2301. Bibcode:1991PNAS...88.2297P. doi:10.1073/pnas.88.6.2297. PMC 51218. PMID 11607165.
  3. ^ Cohen, A.; Procaccia, I. (1985). "Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems". Physical Review A. 28 (3): 2591(R). Bibcode:1985PhRvA..31.1872C. doi:10.1103/PhysRevA.31.1872.
  4. ^ Pincus, S.M.; Kalman, E.K. (2004). "Irregularity, volatility, risk, and financial market time series". Proceedings of the National Academy of Sciences. 101 (38): 13709–13714. Bibcode:2004PNAS..10113709P. doi:10.1073/pnas.0405168101. PMC 518821. PMID 15358860.
  5. ^ Pincus, S.M.; Goldberger, A.L. (1994). "Physiological time-series analysis: what does regularity quantify?". The American Journal of Physiology. 266 (4): 1643–1656. doi:10.1152/ajpheart.1994.266.4.H1643. PMID 8184944. S2CID 362684.
  6. ^ McKinley, R.A.; McIntire, L.K.; Schmidt, R; Repperger, D.W.; Caldwell, J.A. (2011). "Evaluation of Eye Metrics as a Detector of Fatigue". Human Factors. 53 (4): 403–414. doi:10.1177/0018720811411297. PMID 21901937. S2CID 109251681.
  7. ^ Delgado-Bonal, Alfonso; Marshak, Alexander; Yang, Yuekui; Holdaway, Daniel (2020-01-22). "Analyzing changes in the complexity of climate in the last four decades using MERRA-2 radiation data". Scientific Reports. 10 (1): 922. Bibcode:2020NatSR..10..922D. doi:10.1038/s41598-020-57917-8. ISSN 2045-2322. PMC 6976651. PMID 31969616.
  8. ^ Delgado-Bonal, Alfonso; Marshak, Alexander (June 2019). "Approximate Entropy and Sample Entropy: A Comprehensive Tutorial". Entropy. 21 (6): 541. Bibcode:2019Entrp..21..541D. doi:10.3390/e21060541. PMC 7515030. PMID 33267255.
  9. ^ "PhysioNet". Archived from the original on 2012-06-18. Retrieved 2012-07-04.
  10. ^ Ho, K. K.; Moody, G. B.; Peng, C.K.; Mietus, J. E.; Larson, M. G.; levy, D; Goldberger, A. L. (1997). "Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics". Circulation. 96 (3): 842–848. doi:10.1161/01.cir.96.3.842. PMID 9264491.
  11. ^ Richman, J.S.; Moorman, J.R. (2000). "Physiological time-series analysis using approximate entropy and sample entropy". American Journal of Physiology. Heart and Circulatory Physiology. 278 (6): 2039–2049. doi:10.1152/ajpheart.2000.278.6.H2039. PMID 10843903. S2CID 2389971.
  12. ^ Sabeti, Malihe (2009). "Entropy and complexity measures for EEG signal classification of schizophrenic and control participants". Artificial Intelligence in Medicine. 47 (3): 263–274. doi:10.1016/j.artmed.2009.03.003. PMID 19403281.
  13. ^ Yuan, Qi (2011). "Epileptic EEG classification based on extreme learning machine and nonlinear features". Epilepsy Research. 96 (1–2): 29–38. doi:10.1016/j.eplepsyres.2011.04.013. PMID 21616643. S2CID 41730913.
  14. ^ Yun, Kyongsik (2012). "Decreased cortical complexity in methamphetamine abusers". Psychiatry Research: Neuroimaging. 201 (3): 226–32. doi:10.1016/j.pscychresns.2011.07.009. PMID 22445216. S2CID 30670300.

Read other articles:

Hamit Hüsnü Kayacan Informasi pribadiNama lengkap Hamit Hüsnü KayacanTanggal lahir 1868Tempat lahir Istanbul, Ottoman EmpireTanggal meninggal 6 Mei 1952(1952-05-06) (umur 84)Tempat meninggal Istanbul, Turki Hamit Hüsnü Kayacan (1868-1952), merupakan mantan insan musik dan olahraga, dan merupakan kakak dari pemain sepak bola turki pertama yaitu Fuat Hüsnü Kayacan. Ia lahir di Istanbul pada tahun 1868 dan meninggal pada tahun 1952 di Istanbul. Ayah mereka adalah Hüseyin Hüsnü P...

 

 

العلاقات البحرينية الجنوب أفريقية البحرين جنوب أفريقيا   البحرين   جنوب أفريقيا تعديل مصدري - تعديل   العلاقات البحرينية الجنوب أفريقية هي العلاقات الثنائية التي تجمع بين البحرين وجنوب أفريقيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة...

 

 

Supercoppa UEFA 1984UEFA Super Cup 1984 Competizione Supercoppa UEFA Sport Calcio Edizione 10ª Organizzatore UEFA Date 16 gennaio 1985 Luogo Torino Partecipanti 2 Formula gara unica Impianto/i Stadio Comunale Risultati Vincitore Juventus(1º titolo) Secondo Liverpool Statistiche Gol segnati 2 Pubblico 55 384 spettatori Il capitano della Juventus, Gaetano Scirea (con indosso la casacca del Liverpool), solleva il trofeo della Supercoppa UEFA — all'epoca, una targa — vinta per la prim...

Questa voce o sezione deve essere rivista e aggiornata appena possibile. Sembra infatti che questa voce contenga informazioni superate e/o obsolete. Se puoi, contribuisci ad aggiornarla. Muhammad Mustafā al-Barādeʿī Vicepresidente dell'Egitto (ad interim)Durata mandato9 luglio 2013 –14 agosto 2013 PresidenteAdli Mansur (ad interim) Vice presidenteGeorge Isaac PredecessoreMahmoud Mekki Successorecarica abolita Leader del Partito della CostituzioneDurata mandato28...

 

 

イスラームにおける結婚(イスラームにおけるけっこん)とは、二者の間で行われる法的な契約である。新郎新婦は自身の自由な意思で結婚に同意する。口頭または紙面での規則に従った拘束的な契約は、イスラームの結婚で不可欠だと考えられており、新郎と新婦の権利と責任の概要を示している[1]。イスラームにおける離婚は様々な形をとることができ、個�...

 

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

Pour les articles homonymes, voir Lucas. E. V. LucasBiographieNaissance 12 juin 1868LondresDécès 26 juin 1938 (à 70 ans)MaryleboneNationalité britanniqueFormation Friends School Saffron Walden (en)Activités Journaliste, écrivain, romancier, essayisteRédacteur à The AtlanticFratrie Perceval Lucas (d)Autres informationsDistinction Compagnon d'honneurmodifier - modifier le code - modifier Wikidata Edward Verrall Lucas, né le 12 juin 1868 à Eltham et meurt le 26 juin 1938 à ...

 

 

У этого термина существуют и другие значения, см. Чайки (значения). Чайки Доминиканская чайкаЗападная чайкаКалифорнийская чайкаМорская чайка Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:Вторич...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. The Killer's Shopping ListPoster promosiNama alternatifThe Murderer's Shopping ListHangul살인자의 쇼핑목록 GenreDramaKomediBerdasarkanThe Killer's Shopping Listoleh Kang Ji-youngDitulis olehHan Ji-wan[1]SutradaraLee Eon-hee[1 ...

City in Egypt For the Tanzanian city, see Dar es Salaam. For the Southeast Asian Country, see Brunei Darussalam. For other uses, see Dar al-Salam. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dar El Salam – news · newspapers · books · scholar · JSTOR (September 2010) (Learn how and when to remove this mes...

 

 

DSC1 التراكيب المتوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 5IRY المعرفات الأسماء المستعارة DSC1, CDHF1, DG2/DG3, desmocollin 1 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 125643 MGI: MGI:109173 HomoloGene: 22761 GeneCards: 1823 علم الوجود الجيني الوظيفة الجزيئية • ربط أ...

 

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

Polish philosopher and historian of ideas (born 1927–2009) Leszek KołakowskiKołakowski in 1971Born(1927-10-23)23 October 1927Radom, PolandDied17 July 2009(2009-07-17) (aged 81)Oxford, EnglandEducationUniversity of ŁódźUniversity of Warsaw (PhD, 1953)Notable workMain Currents of Marxism (1976)AwardsPeace Prize of the German Book Trade (1977)MacArthur Fellowship (1983)Erasmus Prize (1983)Kluge Prize (2003)Jerusalem Prize (2007)Era20th-/21st-century philosophyRegionWestern philosophy...

 

 

Private university in New Orleans, Louisiana, US This article is about the Historically Black University in New Orleans. For the Jesuit University in Ohio, see Xavier University. For other schools with similar names, see Xavier University (disambiguation). Xavier University of LouisianaMottoDeo Adjuvante Non TimendumMotto in EnglishWith God's help there is nothing to fearTypePrivate historically black universityEstablished1925 (1925)FounderSt. Katharine DrexelReligious affiliationCa...

 

 

This article may require copy editing for grammar, style, cohesion, tone, or spelling. You can assist by editing it. (October 2023) (Learn how and when to remove this message)One of the most popular schools of the Vedanta school of Hindu philosophy This article uses texts from within a religion or faith system without referring to secondary sources that critically analyze them. Please help improve this article. (March 2017) (Learn how and when to remove this message) Part of a series onPhilos...

One of the seventy early Christian disciples For other uses, see Agabus (disambiguation). SaintAgabusAgabus c. 1690 by Marc ArcisProphet, Disciple, & MartyrBorn1st century ADAntioch, Province of Syria, Roman EmpireDiedunknownAntiochVenerated inRoman Catholic ChurchEastern Orthodox ChurchChurch of England IslamFeastFebruary 13 (Roman Catholic)March 8 (Eastern Orthodox)Patronageprophets Agabus (/ˈæɡəbəs/; Greek: Ἄγαβος, romanized: Hágabos; Syriac: ܚܓܒ, romani...

 

 

Competition climbingat the Games of the XXXIII OlympiadVenueLe Bourget Sport Climbing VenueDates5–10 August 2024No. of events4Competitors68← 20202028 → Sport climbing at the2024 Summer OlympicsQualificationCombinedmenwomenSpeedmenwomenvte Competition climbing at the 2024 Summer Olympics is scheduled to run from 5 to 10 August at Le Bourget Sport Climbing Venue in Saint-Denis, returning to the program for the second time since the sport's official debut three years ear...

 

 

Palestinian Jewish unit of the British Army (1944–1946) For other Jewish regiments, see Jewish Legion (disambiguation). Jewish Brigade Insignia and sleeve patch of the Jewish BrigadeActive1944–1946Country United KingdomBranch British ArmyTypeInfantrySize5,000 Palestinian JewsEngagements Second World War Italian Campaign CommandersNotablecommandersErnest BenjaminMilitary unit The Jewish Infantry Brigade Group,[1] more commonly known as the Jewish Brigade Group[2] ...

Electronic document used to prove the ownership of a public key In cryptography, a public key certificate, also known as a digital certificate or identity certificate, is an electronic document used to prove the validity of a public key.[1][2] The certificate includes the public key and information about it, information about the identity of its owner (called the subject), and the digital signature of an entity that has verified the certificate's contents (called the issuer). ...

 

 

Tina Nur Alam Anggota Dewan Perwakilan RakyatPetahanaMulai menjabat 1 Oktober 2019Daerah pemilihanSulawesi TenggaraMasa jabatan1 Oktober 2014 – 25 Agustus 2018PenggantiWaode Nur Zaenab[1]Daerah pemilihanSulawesi Tenggara Informasi pribadiLahir23 Maret 1964 (umur 60)Kendari, Sulawesi Tenggara, IndonesiaPartai politikPartai NasDem (sejak 2018)Afiliasi politiklainnyaPartai Amanat Nasional (hingga 2018)Suami/istriNur AlamAnak3Alma materUniversitas Halu OleoPekerjaanPol...