Antihomomorphism

In mathematics, an antihomomorphism is a type of function defined on sets with multiplication that reverses the order of multiplication. An antiautomorphism is an invertible antihomomorphism, i.e. an antiisomorphism, from a set to itself. From bijectivity it follows that antiautomorphisms have inverses, and that the inverse of an antiautomorphism is also an antiautomorphism.

Definition

Informally, an antihomomorphism is a map that switches the order of multiplication. Formally, an antihomomorphism between structures and is a homomorphism , where equals as a set, but has its multiplication reversed to that defined on . Denoting the (generally non-commutative) multiplication on by , the multiplication on , denoted by , is defined by . The object is called the opposite object to (respectively, opposite group, opposite algebra, opposite category etc.).

This definition is equivalent to that of a homomorphism (reversing the operation before or after applying the map is equivalent). Formally, sending to and acting as the identity on maps is a functor (indeed, an involution).

Examples

In group theory, an antihomomorphism is a map between two groups that reverses the order of multiplication. So if φ : XY is a group antihomomorphism,

φ(xy) = φ(y)φ(x)

for all x, y in X.

The map that sends x to x−1 is an example of a group antiautomorphism. Another important example is the transpose operation in linear algebra, which takes row vectors to column vectors. Any vector-matrix equation may be transposed to an equivalent equation where the order of the factors is reversed.

With matrices, an example of an antiautomorphism is given by the transpose map. Since inversion and transposing both give antiautomorphisms, their composition is an automorphism. This involution is often called the contragredient map, and it provides an example of an outer automorphism of the general linear group GL(n, F), where F is a field, except when |F| = 2 and n = 1 or 2, or |F| = 3 and n = 1 (i.e., for the groups GL(1, 2), GL(2, 2), and GL(1, 3)).

In ring theory, an antihomomorphism is a map between two rings that preserves addition, but reverses the order of multiplication. So φ : XY is a ring antihomomorphism if and only if:

φ(1) = 1
φ(x + y) = φ(x) + φ(y)
φ(xy) = φ(y)φ(x)

for all x, y in X.[1]

For algebras over a field K, φ must be a K-linear map of the underlying vector space. If the underlying field has an involution, one can instead ask φ to be conjugate-linear, as in conjugate transpose, below.

Involutions

It is frequently the case that antiautomorphisms are involutions, i.e. the square of the antiautomorphism is the identity map; these are also called involutive antiautomorphisms. For example, in any group the map that sends x to its inverse x−1 is an involutive antiautomorphism.

A ring with an involutive antiautomorphism is called a *-ring, and these form an important class of examples.

Properties

If the source X or the target Y is commutative, then an antihomomorphism is the same thing as a homomorphism.

The composition of two antihomomorphisms is always a homomorphism, since reversing the order twice preserves order. The composition of an antihomomorphism with a homomorphism gives another antihomomorphism.

See also

References

  1. ^ Jacobson, Nathan (1943). The Theory of Rings. Mathematical Surveys and Monographs. Vol. 2. American Mathematical Society. p. 16. ISBN 0821815024.

Read other articles:

Dari kanan ke kiri: patung Isis, suaminya Osiris, dan putra mereka Horus, protagonis mitos Osiris. Patung ini berasal dari masa Dinasti ke-22 Mitos Osiris adalah kisah yang paling rumit dan berpengaruh dalam mitologi Mesir kuno. Mitos ini berkisah tentang pembunuhan dewa Osiris, penguasa awal Mesir Kuno, dan dampak dari pembunuhan tersebut. Pembunuh Osiris adalah saudaranya sendiri, yaitu Set, yang kemudian merebut takhta Osiris. Sementara itu, istri Osiris, Isis, menghidupkan kembali tubuh s...

 

Division 1 1988-1989 Competizione Division 1 Sport Calcio Edizione 51ª Organizzatore LFP Date dal 15 luglio 1988al 31 maggio 1989 Luogo  Francia Partecipanti 20 Formula Girone unico Sito web lfp.fr Risultati Vincitore Olympique Marsiglia(5º titolo) Retrocessioni StrasburgoLavalLens Statistiche Miglior marcatore Jean-Pierre Papin (22) Incontri disputati 380 Gol segnati 900 (2,37 per incontro) Pubblico 8 508 316 (22 390 per incontro) Cronologia della com...

 

The Encyclopedia of Science Fiction Nombre de pages 672 pp, 1979 1370 pp, 1993 1386 pp, 1995 1396 pp, 1999 modifier  The Encyclopedia of Science Fiction (SFE, littéralement : L'Encyclopédie de la science-fiction) est un ouvrage de référence en anglais sur la science-fiction, publié pour la première fois en 1979. En octobre 2011, la troisième édition a été mise à disposition gratuitement en ligne[1], puis, dix ans plus tard, en octobre 2021, la quatrième[2]. Histoire Mal...

Vous lisez un « article de qualité » labellisé en 2012. Saison 2010-2011du LOSC Lille Métropole Les joueurs du LOSC Lille Métropole défilant à la suite de leur victoire en Ligue 1.Généralités Couleurs Blanc et rouge Stade Stadium Lille Métropole18 154 places Président Michel Seydoux Entraîneur Rudi Garcia Résultats Championnat Champion 76 points (21V, 13N, 4D)(68 buts pour, 36 buts contre) Coupe de France VainqueurContre le Paris Saint-Germain (1-0) Coupe de la ...

 

تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوق بها. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. (ديسمبر 2022) سامسونج جالاكسي بوكيت نيومعلومات عامةالنوع Pocketالصانع سامسونجعائلة...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (ديسمبر 2018)   لمعانٍ أخرى، طالع استراحة (توضيح). استراحة في العمل (بالإنجليزية: Break)‏ ه...

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Nathanael Greene – berita · surat kabar · buku · cendekiawan · JSTORArtikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tida...

 

Process of UN project (1947–1948) The Universal Declaration of Human Rights was drafted between early 1947 and late 1948 by a committee formed by the United Nations Commission on Human Rights. Further discussion and amendments were made by the Commission on Human Rights, the Economic and Social Council and the General Assembly of the United Nations. Representatives of the UN Commission on the Status of Women participated in the meetings of the UN Commission on Human Rights, debating for a g...

Heyy BabyyPoster film Heyy BabyySutradaraSajid KhanProduserSajid NadiadwalaDitulis olehSajid KhanMilap ZaveriPemeranAkshay KumarVidya BalanFardeen KhanRitesh DeshmukhBoman IraniAnupam KherPenata musikShankar-Ehsaan-LoySinematograferHimman DhamijaPenyuntingRameshwar S. BhagatPerusahaanproduksiNadiadwala Grandson EntertainmentDistributorEros InternationalTanggal rilis24 Agustus 2007Durasi146 menitNegaraIndiaBahasaHindiAnggaran31 crore Heyy Babyy adalah sebuah film Hindi yang dibintangi Ak...

 

Министерство природных ресурсов и экологии Российской Федерациисокращённо: Минприроды России Общая информация Страна  Россия Юрисдикция Россия Дата создания 12 мая 2008 Предшественники Министерство природных ресурсов Российской Федерации (1996—1998)Министерство охраны...

 

 本表是動態列表,或許永遠不會完結。歡迎您參考可靠來源來查漏補缺。 潛伏於中華民國國軍中的中共間諜列表收錄根據公開資料來源,曾潛伏於中華民國國軍、被中國共產黨聲稱或承認,或者遭中華民國政府調查審判,為中華人民共和國和中國人民解放軍進行間諜行為的人物。以下列表以現今可查知時間為準,正確的間諜活動或洩漏機密時間可能早於或晚於以下所歸�...

Cet article est une ébauche concernant une localité allemande. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Simbach am Inn L'hôtel de ville de Simbach am Inn. Armoiries Administration Pays Allemagne Land Bavière District(Regierungsbezirk) Basse-Bavière Arrondissement(Landkreis) Rottal-Inn Bourgmestre(Bürgermeister) Günther Wöhl Code postal 84359 Code communal(Gemeindeschlüssel) 09 2 77 145 Indicatif ...

 

You can help expand this article with text translated from the corresponding article in Spanish. (April 2012) Click [show] for important translation instructions. View a machine-translated version of the Spanish article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikip...

 

1979 single by Joe JacksonSunday PapersSingle by Joe Jacksonfrom the album Look Sharp! B-sideLook Sharp!ReleasedFebruary 1979Recorded1978Genre New wave ska Length4:22LabelA&M - AMS 7413Songwriter(s)Joe JacksonProducer(s)David KershenbaumJoe Jackson singles chronology Is She Really Going Out with Him? (1978) Sunday Papers (1979) One More Time (1979) Sunday Papers is a song written and performed by British new wave musician Joe Jackson. It was released on his debut album, Look Sharp!. Writt...

خطل السمع معلومات عامة من أنواع هلوسة،  واضطراب السمع  [لغات أخرى]‏  تعديل مصدري - تعديل   الهلوسة السمعية (بالإنجليزية: Auditory hallucination)‏ أو خطل السمع (بالإنجليزية: paracusia)‏ هو نوع من أنواع الهلوسة تتصف بإدراك الصوت من دون منبه صوتي.ويجب التمييز بين الهلوسة السمع�...

 

「ポルノグラフィ」とは異なります。 この項目では、日本のロックバンドについて説明しています。 このバンドの同名アルバムについては「ポルノグラフィティ (ポルノグラフィティのアルバム)」をご覧ください。 アメリカのロックバンド・エクストリームのアルバムについては「ポルノグラフィティ (エクストリームのアルバム)」をご覧ください。 ポルノグラフィ...

 

2020年夏季奥林匹克运动会德国代表團德国国旗IOC編碼GERNOC德國奧林匹克體育同盟網站www.dosb.de(德文)(英文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員398參賽項目32个大项旗手开幕式:帕特里克·豪斯丁(跳水)和劳拉·路德维希(排球)[1]闭幕式:罗纳德·劳厄(皮划艇)[2]獎牌榜排�...

此條目没有列出任何参考或来源。 (2021年12月29日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 腓特烈·卡爾符騰堡-溫嫩塔爾公爵出生(1652-09-12)1652年9月12日斯圖加特逝世1697年12月20日(1697歲—12—20)(45歲)斯圖加特貴族符騰堡家族父親埃伯哈德三世母親安娜·卡塔里娜 腓特烈·卡爾(德語:Friedrich...

 

Acid-curdled milk or cream used as a drink or dessert topping Sillabub redirects here. For the Cats character sometimes known by this name, see Jemima (cat). SyllabubCoursePuddingPlace of originBritainMain ingredientsMilk or cream, sugar, wine  Media: Syllabub An 18th-century syllabub glass Syllabub is a sweet dish made by curdling sweet cream or milk with an acid such as wine or cider. It was a popular British confection from the 16th to the 19th centuries.[1] Early recipes ...