Cavalleri is known for his application of light to create new states of matter, and especially for the use of terahertz and mid-infrared optical pulses to sculpt new crystal structures. The field of research pioneered by Cavalleri is sometimes referred to as non-linear phononics.[4][5]
He has shown that phononic control can be used to create new crystal structures with light, to induce hidden metallic states in oxides,[6] induce ferroelectricity in dielectrics,[7] manipulate magnetism [8][9] and create non-equilibrium superconductivity at very high temperatures.[10][11] Cavalleri has also been amongst the people who applied the first femtosecond X-ray pulses to condensed matter systems, for example in his studies of photo-induced phase transitions.[12]
^M. Först, C. Manzoni, S. Kaiser, Y. Tomioka, Y. Tokura, R. Merlin, and A. Cavalleri: Nonlinear phononics as an ultrafast route to lattice control. In: Nature Physics 7, 854-856 (2011), DOI: https://dx.doi.org/10.1038/nphys2055
^R. Mankowsky, A. Subedi, M. Först, S. O. Mariager, M. Chollet, H. T. Lemke, J. S. Robinson, J. M. Glownia, M. P. Minitti, A. Frano, M. Fechner, N. A. Spaldin, T. Loew, B. Keimer, A. Georges, and A. Cavalleri: Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. In: Nature 516, 71-73 (2014), DOI: https://dx.doi.org/10.1038/nature13875
^M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri: Control of the electronic phase of a manganite by mode-selective vibrational excitation. In: Nature 449, 72-74 (2007), DOI: https://dx.doi.org/10.1038/nature06119
^T. F. Nova, A. S. Disa, M. Fechner, and A. Cavalleri: Metastable ferroelectricity in optically strained SrTiO3. In: Science 364 (6445), 1075-1079 (2019, DOI: https://dx.doi.org/10.1126/science.aaw4911
^T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri: An effective magnetic field from optically driven phonons. In: Nature Physics 13, 132-136 (2017), DOI: https://dx.doi.org/10.1038/nphys3925
^A. S. Disa, M. Fechner, T. F. Nova, B. Liu, M. Först, D. Prabhakaran, P. G. Radaelli, A. Cavalleri: Polarizing an antiferromagnet by optical engineering of the crystal field. In: Nature Physics 16, 937-941 (2020), DOI: https://dx.doi.org/10.1038/s41567-020-0936-3
^D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri: Light-Induced Superconductivity in a Stripe-Ordered Cuprate In: Science 331 (6014), 189-191 (2011), DOI: https://dx.doi.org/10.1126/science.1197294
^M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D. Jaksch, and A. Cavalleri: Possible light-induced superconductivity in K3C60 at high temperature. In: Nature 530, 461-464 (2016), DOI: https://dx.doi.org/10.1038/nature16522
^A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer. Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition In: Physical Review Letters 87 (23), 237401 (2001), DOI: https://dx.doi.org/10.1103/PhysRevLett.87.237401