Allegory (mathematics)

In the mathematical field of category theory, an allegory is a category that has some of the structure of the category Rel of sets and binary relations between them. Allegories can be used as an abstraction of categories of relations, and in this sense the theory of allegories is a generalization of relation algebra to relations between different sorts. Allegories are also useful in defining and investigating certain constructions in category theory, such as exact completions.

In this article we adopt the convention that morphisms compose from right to left, so RS means "first do S, then do R".

Definition

An allegory is a category in which

  • every morphism is associated with an anti-involution, i.e. a morphism with and and
  • every pair of morphisms with common domain/codomain is associated with an intersection, i.e. a morphism

all such that

  • intersections are idempotent: commutative: and associative:
  • anti-involution distributes over intersection:
  • composition is semi-distributive over intersection: and and
  • the modularity law is satisfied:

Here, we are abbreviating using the order defined by the intersection: means

A first example of an allegory is the category of sets and relations. The objects of this allegory are sets, and a morphism is a binary relation between X and Y. Composition of morphisms is composition of relations, and the anti-involution of is the converse relation : if and only if . Intersection of morphisms is (set-theoretic) intersection of relations.

Regular categories and allegories

Allegories of relations in regular categories

In a category C, a relation between objects X and Y is a span of morphisms that is jointly monic. Two such spans and are considered equivalent when there is an isomorphism between S and T that make everything commute; strictly speaking, relations are only defined up to equivalence (one may formalise this either by using equivalence classes or by using bicategories). If the category C has products, a relation between X and Y is the same thing as a monomorphism into X × Y (or an equivalence class of such). In the presence of pullbacks and a proper factorization system, one can define the composition of relations. The composition is found by first pulling back the cospan and then taking the jointly-monic image of the resulting span

Composition of relations will be associative if the factorization system is appropriately stable. In this case, one can consider a category Rel(C), with the same objects as C, but where morphisms are relations between the objects. The identity relations are the diagonals

A regular category (a category with finite limits and images in which covers are stable under pullback) has a stable regular epi/mono factorization system. The category of relations for a regular category is always an allegory. Anti-involution is defined by turning the source/target of the relation around, and intersections are intersections of subobjects, computed by pullback.

Maps in allegories, and tabulations

A morphism R in an allegory A is called a map if it is entire and deterministic Another way of saying this is that a map is a morphism that has a right adjoint in A when A is considered, using the local order structure, as a 2-category. Maps in an allegory are closed under identity and composition. Thus, there is a subcategory Map(A) of A with the same objects but only the maps as morphisms. For a regular category C, there is an isomorphism of categories In particular, a morphism in Map(Rel(Set)) is just an ordinary set function.

In an allegory, a morphism is tabulated by a pair of maps and if and An allegory is called tabular if every morphism has a tabulation. For a regular category C, the allegory Rel(C) is always tabular. On the other hand, for any tabular allegory A, the category Map(A) of maps is a locally regular category: it has pullbacks, equalizers, and images that are stable under pullback. This is enough to study relations in Map(A), and in this setting,

Unital allegories and regular categories of maps

A unit in an allegory is an object U for which the identity is the largest morphism and such that from every other object, there is an entire relation to U. An allegory with a unit is called unital. Given a tabular allegory A, the category Map(A) is a regular category (it has a terminal object) if and only if A is unital.

More sophisticated kinds of allegory

Additional properties of allegories can be axiomatized. Distributive allegories have a union-like operation that is suitably well-behaved, and division allegories have a generalization of the division operation of relation algebra. Power allegories are distributive division allegories with additional powerset-like structure. The connection between allegories and regular categories can be developed into a connection between power allegories and toposes.

References

  • Peter Freyd, Andre Scedrov (1990). Categories, Allegories. Mathematical Library Vol 39. North-Holland. ISBN 978-0-444-70368-2.
  • Peter Johnstone (2003). Sketches of an Elephant: A Topos Theory Compendium. Oxford Science Publications. OUP. ISBN 0-19-852496-X.

Read other articles:

Berikut adalah daftar kota di Rumania menurut populasi (sensus 2002). Kota dengan penduduk lebih dari 100.000 Peringkat Kota Provinsi Jumlah penduduk Metro. Bukares Iaşi Cluj-Napoca Timişoara Constanţa 1 Bukares B 1.944.367 2.200.000 2 Timişoara TM 311.586 387.900 3 Iaşi IS 308.843 397.800 4 Cluj-Napoca CJ 306.474 360.000 5 Constanţa CT 302.171 550.000 6 Craiova DJ 298.928 370.000 7 Galaţi GL 291.354 600.000 8 Braşov BV 278.048 398.100 9 Ploieşti PH 229.285 300.000 10 Brăila BR 212....

 

Republik PrancisRépublique française1870–1940 Bendera Lambang Semboyan: Liberté, égalité, fraternité(Kebebasan, keadilan, persaudaraan)Lagu kebangsaan: La Marseillaise(Marseillaise)Segel Agung Prancis: Republik Prancis pada tahun 1939   Prancis   Protektorat Prancis Wilayah dan koloni Republik Prancis pada akhir tahun 1939 Biru tua: Wilayah Metropolitan Biru muda: Koloni, mandat, dan protektorat Ibu kota(dan kota terbesar)ParisBahasa yang umum diguna...

 

Tianruncheng天润城LokasiDistrik Pukou, Nanjing, JiangsuChinaOperatorNanjing Metro Co. Ltd.Jalur     Jalur 3KonstruksiJenis strukturBawah tanahSejarahDibuka1 April 2015Operasi layanan Stasiun sebelumnya   Nanjing Metro   Stasiun berikutnya Taifenglu Linchang Jalur 3Liuzhou­donglu Mozhou­donglu Sunting kotak info • L • BBantuan penggunaan templat ini Stasiun Tianruncheng (Hanzi: 天润城站), adalah sebuah stasiun di Jalur 3 dari Nan...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Imadate District, Fukui – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this template message) You can help expand this article with text translated from the corresponding article in Japanese. (April 2023) Click [sh...

 

Bidang tipis butiran muskovit Pleokroisme adalah fenomena optik ketika butiran mineral di dalam sebuah batu terlihat berwarna-warni ketika dilihat dari sudut-sudut tertentu menggunakan mikroskop petrografi yang terpolarisasi.[1] Lihat pula Bias ganda Catatan kaki ^ Webmineral: Pleochroism in minerals.  Artikel bertopik mineral ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

Religious seminary in Lahore, Pakistan Not to be confused with Al Jamiatul Ashrafia. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Jamia Ashrafia – news · newspapers · books · scholar · JSTOR (Februa...

Australian cricketer Bill O'ReillyO'Reilly in the 1930sPersonal informationFull nameWilliam Joseph O'ReillyBorn(1905-12-20)20 December 1905White Cliffs, New South Wales, AustraliaDied6 October 1992(1992-10-06) (aged 86)Sutherland, New South Wales, AustraliaNicknameTigerHeight6 ft 2 in (1.88 m)BattingLeft-handedBowlingRight-arm leg breakRoleBowlerInternational information National sideAustraliaTest debut (cap 140)29 January 1932 v South AfricaLast Te...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dubai bid for the 2016 Summer Olympics – news · newspapers · books · scholar · JSTOR (March 2018) (Learn how and when to remove this message) Bids for the 2016 (2016) Summer Olympics OverviewGames of the XXXI OlympiadDetailsCityDubai, United Arab EmiratesN...

 

Pour les articles homonymes, voir Kuster. Ann McLane Kuster Fonctions Présidente de la New Democrat Coalition En fonction depuis le 3 janvier 2023(1 an, 4 mois et 23 jours) Prédécesseur Suzan DelBene Représentante des États-Unis En fonction depuis le 3 janvier 2013(11 ans, 4 mois et 23 jours) Élection 6 novembre 2012 Réélection 4 novembre 20148 novembre 20166 novembre 20183 novembre 20208 novembre 2022 Circonscription 2e district du New Hampshire L�...

County in Utah, United States County in UtahKane CountyCountyNarrows in Diana's Throne Canyon, also known as the Huntress Slot in vicinity of Mount Carmel Junction.[1]Location within the U.S. state of UtahUtah's location within the U.S.Coordinates: 37°17′N 111°53′W / 37.29°N 111.89°W / 37.29; -111.89Country United StatesState UtahFoundedJanuary 16, 1864Named forThomas L. KaneSeatKanabLargest cityKanabArea • Total4,109 sq ...

 

Hindu temple in Andhra Pradesh, India Padmavathi Temple, TiruchanurPradhana (Main) Gopuram of Sri Padmavathi Ammavari Temple, TiruchanurReligionAffiliationHinduismDistrictTirupatiDeityPadmavathiFestivalsBrahmotsavam, Panchami Teertham, Varalakshmi VratamGoverning bodyTirumala Tirupati DevasthanamsLocationLocation Tiruchanur, TirupatiStateAndhra PradeshCountry IndiaPadmavathi Temple, Tiruchanur, Tirupati, Andhra PradeshGeographic coordinates13°36′28.1″N 79°27′00.4″E / &#...

 

  لمعانٍ أخرى، طالع الردف (توضيح). قرية الردف  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة حجة المديرية مديرية بني قيس الطور العزلة عزلة ربع الشمري السكان التعداد السكاني 2004 السكان 97   • الذكور 50   • الإناث 47   • عدد الأسر 10   • عدد المساكن 10 م...

У этого термина существуют и другие значения, см. Улица Багрицкого. Улица Багрицкого улица Багрицкого Общая информация Страна Россия Город Москва Округ ЗАО Район Можайский Протяжённость 1,6 км Метро 0304 Кунцевская 11 Кунцевская D1 Кунцевская (МЦД) 11 Давыдково Прежние назван�...

 

Stasiun Namezu滑津駅Stasiun Namezu, Oktober 2009Lokasi2496 Namezu, Saku-shi, Nagano-ken 385-0051 JepangKoordinat36°14′20″N 138°28′30″E / 36.2388°N 138.4751°E / 36.2388; 138.4751Ketinggian665.2 meter[1]Operator JR EastJalur■ Jalur KoumiLetak66.5 km dari KobuchizawaJumlah peron1 peron sisiInformasi lainStatusTanpa staffSitus webSitus web resmiSejarahDibuka6 Juni 1916PenumpangFY201186 Lokasi pada petaStasiun Namezu mmLokasi di Nagano Prefectu...

 

Telephone area codes in Oklahoma, USA Area codes 918 and 539 are telephone area codes serving Tulsa and northeast Oklahoma. Besides Tulsa, these area codes cover cities such as Bartlesville, Broken Arrow, Claremore, Gore, Jenks, McAlester, Muskogee, Okmulgee, Pryor, Sapulpa, Tahlequah, and northeastern Oklahoma. Area code 918 was created in 1953 as a split from area code 405. Area code 539 was created as an overlay for 918. It became active on April 1, 2011 (although 539 numbers could have be...

Species of wrasse For naval ships using this name, see USS Tautog. Tautog Conservation status Vulnerable  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Labriformes Family: Labridae Genus: TautogaMitchill, 1814 Species: T. onitis Binomial name Tautoga onitis(Linnaeus, 1758) Synonyms Genus: Hiatula Lacépède, 1800 (preoccupied in Mollusca) Species: Labrus onitis Linnaeus, 1758 The tautog (Tautoga onit...

 

Vice President of Yemen from 1990 to 1994 Ali Salem al Beidhعلي سالم البيضAl Beidh in 1990Vice President of YemenIn office22 May 1990 – 6 May 1994PresidentAli Abdullah Saleh (Chairman of the Presidential Council)Prime MinisterHaidar Abu Bakr al-AttasMuhammad Said al-AttarPreceded byPosition createdSucceeded byAbdrabbuh Mansur Hadi (Vice President)General Secretary of the Yemeni Socialist PartyIn office24 January 1986 – 9 June 1994[1]Preceded byAli Nas...

 

SunkistVersi kaleng dari Sunkist jeruk di Hong Kong.JenisMinuman ringanProdusenKeurig Dr Pepper (Amerika Serikat)[1]Negara asalNew Mexico, Amerika SerikatDiperkenalkan1979; 45 tahun lalu (1979)Produk terkaitFanta, MirindaSitus webwww.sunkistsoda.com Sunkist merupakan sebuah merek minuman (khususnya minuman ringan dan sari buah) yang berasal dari Amerika Serikat, yang dikenal dengan varian rasa jeruknya. Sejarah Sunkist sebenarnya merupakan merek yang digunakan untuk menyebut jeru...

Teluk MengkuduKecamatanNegara IndonesiaProvinsiSumatera UtaraKabupatenSerdang BedagaiPemerintahan • CamatDra. Sri Rahayu [butuh rujukan]Populasi • Total- jiwaKode Kemendagri12.18.03 Kode BPS1218090 Luas- km² Tanda selamat datang di Kecamatan Teluk Mengkudu Teluk Mengkudu adalah sebuah kecamatan di Kabupaten Serdang Bedagai, Sumatera Utara, Indonesia. Wilayah Wilayah Kecamatan Teluk Mengkudu terbagi menjadi desa-desa berikut:[1] Liberia Sei Buluh P...

 

Prima Divisione 1936-37Formazione della S.S. Parioli Roma Campione d'Italia di Prima DivisioneDettagli della competizioneSport Pallacanestro Edizione7ª OrganizzatoreFIP Federazione FIP Periodo29 novembre 1936 —23 maggio 1937 Data1937 Squadre63  (in 16 gironi) VerdettiCampioneSocietà Sportiva Parioli Roma(1º titolo) Cronologia della competizioneed. successiva →     ← ed. precedente Modifica dati su Wikidata · Manuale La Prima Divisione 1936-1937 ...