A compactcontractibleStein4-manifold with involution on its boundary is called an Akbulut cork, if extends to a self-homeomorphism but cannot extend to a self-diffeomorphism inside (hence a cork is an exotic copy of itself relative to its boundary). A cork is called a cork of a smooth 4-manifold , if removing from and re-gluing it via changes the smooth structure of (this operation is called "cork twisting"). Any exotic copy of a closed simply connected 4-manifold differs from by a single cork twist.[3][4][5][6][7]
The basic idea of the Akbulut cork is that when attempting to use the h-cobodism theorem in four dimensions, the cork is the sub-cobordism that contains all the exotic properties of the spaces connected with the cobordism, and when removed the two spaces become trivially h-cobordant and smooth. This shows that in four dimensions, although the theorem does not tell us that two manifolds are diffeomorphic (only homeomorphic), they are "not far" from being diffeomorphic.[8]
To illustrate this (without proof), consider a smooth h-cobordism between two 4-manifolds and . Then within there is a sub-cobordism between and and there is a diffeomorphism
which is the content of the h-cobordism theorem for n ≥ 5 (here int X refers to the interior of a manifold X). In addition, A and B are diffeomorphic with a diffeomorphism that is an involution on the boundary ∂A = ∂B.[9] Therefore, it can be seen that the h-corbordism K connects A with its "inverted" image B. This submanifold A is the Akbulut cork.
Asselmeyer-Maluga, Torsten; Brans, Carl H (2007), Exotic Smoothness and Physics: Differential Topology and Spacetime Models, New Jersey, London: World Scientific