Acetone–butanol–ethanol (ABE) fermentation, also known as the Weizmann process, is a process that uses bacterial fermentation to produce acetone, n-butanol, and ethanol from carbohydrates such as starch and glucose. It was developed by chemistChaim Weizmann and was the primary process used to produce acetone, which was needed to make cordite, a substance essential for the British war industry during World War I.[1]
Process
The process may be likened to how yeast ferments sugars to produce ethanol for wine, beer, or fuel, but the organisms that carry out the ABE fermentation are strictly anaerobic (obligate anaerobes). The ABE fermentation produces solvents in a ratio of 3 parts acetone, 6 parts butanol to 1 part ethanol. It usually uses a strain of bacteria from the Class Clostridia (Family Clostridiaceae). Clostridium acetobutylicum is the most well-studied and widely used. Although less effective, Clostridium beijerinckii and Clostridium saccharobutylicum bacterial strains have shown good results as well.[2][3]
The ABE fermentation pathway generally proceeds in two phases. In the initial acidogenesis phase, the cells grow exponentially and accumulate acetate and butyrate. The low pH along with other factors then trigger a metabolic shift to the solventogenesis phase, in which acetate and butyrate are used to produce the solvents.[4]
For gas stripping, the most common gases used are the off-gases from the fermentation itself, a mixture of carbon dioxide and hydrogen gas.[citation needed]
History
The production of butanol by biological means was first performed by Louis Pasteur in 1861.[5] In 1905, Austrian biochemist Franz Schardinger found that acetone could similarly be produced.[5] In 1910 Auguste Fernbach (1860–1939) developed a bacterial fermentation process using potato starch as a feedstock in the production of butanol.[6]
Industrial exploitation of ABE fermentation started in 1916, during World War I, with Chaim Weizmann's isolation of Clostridium acetobutylicum, as described in U.S. patent 1315585.[7]
After World War II, ABE fermentation became generally non-profitable, compared to the production of the same three solvents (acetone, butanol, ethanol) from petroleum.[1] During the 1950s and 1960s, ABE fermentation was replaced by petroleum chemical plants. Due to different raw material costs, ABE fermentation was viable in South Africa until the early 1980s, with the last plant closing in 1983.[9] Green Biologics Ltd operated the last attempt to resurrect the process at scale but the plant closed in Minnesota in June 2019.
A new ABE biorefinery has been developed in Scotland by Celtic Renewables Ltd and will begin production in early 2022. The key difference in the process is the use of low value spent materials or residues from other processes removing the variable costs of raw feedstock crops and materials.[10]
For this reason, in order to have a comparable productivity and profitability with respect to the petrochemical processes, cost and energy effective solutions for the product purification sections are required to provide a significant product recovery at the desired purity.
The main solutions adopted during the last decades have been as follows:[citation needed]
The microorganisms modifications or the research of new strains less sensitive to the butanol concentration poisoning to increase productivity and selectivity towards the butanol species;
The reduction of the energy costs of the separation and purification downstream processing and, in particular, to carry out the separation in-situ in the reactor;
In the second half of the 20th century, these technologies allowed an increase in the final product concentration in the broth from 15 to 30 g/L, an increase in the final productivity from 0.46 to 4.6 g/(L*h) and an increase in the yield from 15 to 42%.[3]
From a compound purification perspective, the main criticalities in the ABE/W product recovery are due to the water–alcohol mixture's non-ideal interactions leading to homogeneous and heterogeneous azeotropic species,[12] as shown by the ternary equilibrium diagram.
This causes the separation by standard distillation to be particularly impractical but, on the other hand, allows the exploitation of the liquid–liquid demixing region both for analogous[13] and alternative[citation needed]separation processes.
Moreover, differently from crude oil feedstocks, biomasses nature fluctuates over the year's seasons and according to the geographical location.[20][21] For this reasons, biorefinery operations need not only to be effective but also to be flexible and to be able to switch between two operating conditions rather quickly.[citation needed]
The International Energy Agency defines renewables as the centre of the transition to a less carbon-intensive and more sustainable energy system. Biofuels are believed to represent around 30% of energy consumption in transport by 2060. Their role is particularly important in sectors which are difficult to decarbonise, such as aviation, shipping and other long-haul transport. That is why several bioprocesses have seen a renewed interest in recent years, both from a research and an industrial perspective.[25]
For this reason, the ABE fermentation process has been reconsidered from a different perspective. Although it was originally conceived to produce acetone, it is considered as a suitable production pathway for biobutanol that has become the product of major interest.
Biogenic butanol is a possible substitute of bioethanol or even better and it is already employed both as fuel additive and as pure fuel instead of standard gasoline because, differently from ethanol, it can be directly and efficiently used in gasoline engines. Moreover, it has the advantage that it can be shipped and distributed through existing pipelines and filling stations.[26]
The application of n-butanol in the production of butyl acrylate has a wide scope for its expansion, which in turn would help in increasing the consumption of n-butanol globally. Butyl acrylate was the biggest n-butanol application in 2014 and is projected to be worth US$3.9 billion by 2020.[28]
References
^ ab
Mark R. Wilkins and Hasan Atiye (2012). "Fermentation". In Nurhan Turgut Dunford (ed.). Food and Industrial Bioproducts and Bioprocessing. Wiley. p. 195. ISBN9781119946052.
^Qureshi N, Blaschek HP (November 2001). "Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101". Journal of Industrial Microbiology and Biotechnology. 27 (5): 287–291. doi:10.1038/sj.jim.7000114. PMID11781803. S2CID25947028.
^ abTrifirò F (June 2010). "Quale la sintesi ideale del butanolo ?". Chimica & Industria: 96–101.
^GB application 191504845, Weizmann C, "Improvements in the Bacterial Fermentation of Carbohydrates and in Bacterial Cultures for the same", published 1919-03-06, assigned to Charles Weizmann
^Fred C. Kelly (1936). One Thing Leads to Another: The Growth of an Industry, Houghton Mifflin
^García V, Päkkilä J, Ojamo H, Muurinen E, Keiski RL (2011). "Challenges in biobutanol production: How to improve the efficiency?". Renewable and Sustainable Energy Reviews. 15 (2): 964–980. doi:10.1016/j.rser.2010.11.008.
^Luyben WL (2008). "Control of the Heterogeneous Azeotropic n-Butanol/Water Distillation System". Energy Fuels. 22 (6): 4249–4258. doi:10.1021/ef8004064.
^Groot WJ, Van der Lans RG, Luyben KC (December 1989). "Batch and continuous butanol fermentations with free cells: integration with product recovery by gas-stripping". Applied Microbiology and Biotechnology. 32 (3): 305–308. doi:10.1007/BF00184979. S2CID10097692.
^Ezeji TC, Qureshi N, Blaschek HP (February 2004). "Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping". Applied Microbiology and Biotechnology. 63 (6): 653–658. doi:10.1007/s00253-003-1400-x. PMID12910325. S2CID5111041.
^Yue D, You F, Snyder SW (July 2014). "Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges". Computers & Chemical Engineering. 66: 36–56. doi:10.1016/j.compchemeng.2013.11.016.
^Giuliano A, Poletto M, Barletta D (March 2016). "Process optimization of a multi-product biorefinery: The effect of biomass seasonality". Chemical Engineering Research and Design. 107: 236–252. doi:10.1016/j.cherd.2015.12.011.
^Errico M, Sanchez-Ramirez E, Quiroz-Ramìrez JJ, Rong BG, Segovia-Hernandez JG (27 September 2017). "Multiobjective Optimal Acetone–Butanol–Ethanol Separation Systems Using Liquid–Liquid Extraction-Assisted Divided Wall Columns". Industrial & Engineering Chemistry Research. 56 (40): 11575–11583. doi:10.1021/acs.iecr.7b03078.
^Groot WJ, Soedjak HS, Donck PB, Van der Lans RG, Luyben KC, Timmer JM (1990). "Butanol recovery from fermentations by liquid-liquid extraction and membrane solvent extraction". Bioprocess Engineering. 5 (5): 203–216. doi:10.1007/BF00376227. S2CID98157509.
^Yang ST, El-Ensashy H, Thongchul N, eds. (2013). Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. Wiley.
^Kraemer K, Harwardt A, Bronneberg R, Marquardt W (May 2011). "Separation of butanol from acetone–butanol–ethanol fermentation by a hybrid extraction–distillation process". Computers & Chemical Engineering. 35 (5): 949–963. doi:10.1016/j.compchemeng.2011.01.028.