7-Methyl-1,5,7-triazabicyclo(4.4.0)dec-5-ene

7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene[1]
Names
Preferred IUPAC name
1-Methyl-2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine
Other names
mTBD; 7-Methyl-TBD; 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene; 1,3,4,6,7,8-Hexahydro-1-methyl-2H-pyrimido[1,2-a]pyrimidine
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.074.332 Edit this at Wikidata
EC Number
  • 281-791-1
UNII
  • InChI=1S/C8H15N3/c1-10-5-3-7-11-6-2-4-9-8(10)11/h2-7H2,1H3
    Key: OEBXWWBYZJNKRK-UHFFFAOYSA-N
  • CN1CCCN2C1=NCCC2
Properties
C8H15N3
Molar mass 153.225 g/mol
Appearance clear liquid[2]
Density 1063.35 kg/m3[2]
Melting point 17[2] °C (63 °F; 290 K)
Boiling point 263[2] °C (505 °F; 536 K)
Thermal conductivity 0.144 W/m/K[2]
1.5357[2]
Viscosity 7.1 cP[2]
Hazards
GHS labelling:
GHS05: Corrosive
Danger
H314
P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P405, P501
Thermochemistry
1.75 J/g/K[2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N (what is checkY☒N ?)

7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD) is a bicyclic strong guanidine base (pKa = 25.43 in CH3CN and pKa = 17.9 in THF).[3] mTBD, like 1,5,7-triazabicyclo[4.4.0]dec-5-ene and other guanidine super bases, can be used as a catalyst in a variety of chemical reactions.[4] It also reacts with CO2,[5] which could make it useful for carbon capture and storage.[6]

When brought into contact with some acids, mTBD reacts to form an ionic liquid. Some of these ionic liquids can dissolve cellulose.[7]

References

  1. ^ 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene at PubChem
  2. ^ a b c d e f g h Baird, Zachariah Steven; Dahlberg, Artur; Uusi-Kyyny, Petri; Osmanbegovic, Nahla; Witos, Joanna; Helminen, Jussi; Cederkrantz, Daniel; Hyväri, Paulus; Alopaeus, Ville; Kilpeläinen, Ilkka; Wiedmer, Susanne K.; Sixta, Herbert (2019). "Physical properties of 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD)". International Journal of Thermophysics. 40 (71): 1. Bibcode:2019IJT....40...71B. doi:10.1007/s10765-019-2540-2.
  3. ^ Ishikawa, T. (2009). Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts. John Wiley & Sons. ISBN 9780470740866.
  4. ^ Simoni, D.; Rondanin, R.; Morini, M.; Baruchello, R.; Invidiata, F. P. (2000). "1,5,7- Triazabicyclo[4.4.0]Dec-1-Ene (TBD), 7-Methyl-TBD (MTBD) and the PolymerSupported TBD (P-TBD): Three Efficient Catalysts for the Nitroaldol (Henry) Reaction and for the Addition of Dialkyl Phosphites to Unsaturated Systems". Tetrahedron Lett. 41 (10): 1607–1610. doi:10.1016/S0040-4039(99)02340-0.
  5. ^ Villiers, Claude; Dognon, Jean-Pierre; Pollet, Rodolphe; Thuéry, Pierre; Ephritikhine, Michel (3 May 2010). "An Isolated CO2 Adduct of a Nitrogen Base: Crystal and Electronic Structures". Angewandte Chemie International Edition. 49 (20): 3465–3468. doi:10.1002/anie.201001035. PMID 20358577.
  6. ^ Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N. (2011). "CO2 Chemistry: Task-Specific Ionic Liquids for CO2 Capture/ Activation and Subsequent Conversion". RSC Adv. 1 (4): 545–567. Bibcode:2011RSCAd...1..545Y. doi:10.1039/C1RA00307K.
  7. ^ Parviainen, A.; King, A. W. T.; Mutikainen, I.; Hummel, M.; Selg, C.; Hauru, L. K. J.; Sixta, H.; Kilpeläinen, I. (2013). "Predicting Cellulose Solvating Capabilities of Acid–Base Conjugate Ionic Liquids". ChemSusChem. 6 (11): 2161–2169. Bibcode:2013ChSCh...6.2161P. doi:10.1002/cssc.201300143. PMID 24106149.