54-46 That's My Number

"54-46 That's My Number"
Single by Toots and the Maytals
ReleasedJanuary 1, 1968[1]
GenreRocksteady, reggae
LabelBeverley's
Songwriter(s)Toots Hibbert
Producer(s)Leslie Kong

"54-46 (That's My Number)" is a song by Fred "Toots" Hibbert. Recorded by Toots and the Maytals, the song was originally released on the Beverley's label in Jamaica and the Pyramid label in the UK.[2] A follow-up version released a year later, "54-46 Was My Number",[3] was one of the first reggae songs to receive widespread popularity outside Jamaica, and is seen as being one of the defining songs of the genre. It has been anthologised repeatedly and the titles of several reggae anthologies include "54-46" in their title.

The lyrics describe Toots' time in prison after being arrested for possession of marijuana. The song features a similar riddim to "Train to Skaville"[4] by Toots and the Maytals' contemporaries, the Ethiopians.[5]

The song appears in the sci-fi film Repo Men and in the series Narcos: Mexico.[6][7]

On November 29, 2016, Major Lazer and Bad Royale released "My Number", a track that samples "54-46 That's My Number". Pitchfork describes the song as "a genre-defining classic from legendary ska/reggae group Toots and the Maytals."[8] This release contains newly recorded vocals from frontman Toots Hibbert specifically designed for Major Lazer, changing the original lyrics to incorporate the group into the song while keeping the original melody.[9][10]

Certifications

Region Certification Certified units/sales
United Kingdom (BPI)[11]
"54-46 (Was My Number)"
Gold 400,000

Sales+streaming figures based on certification alone.

References

  1. ^ "54-46 That's My Number by Toots & the Maytals". Retrieved July 6, 2024.
  2. ^ "54-46 That's My Number/Dreamland (Roland Alphonso)". Maytals.net. Archived from the original on 2014-05-20. Retrieved 2014-05-20.
  3. ^ ""5446" Was My Number/Version". Maytals.net. Archived from the original on 2014-05-20. Retrieved 2014-05-20.
  4. ^ "Train to Skaville". Archived from the original on 2009-10-21.
  5. ^ "The Ethiopians". Archived from the original on 2009-10-20.
  6. ^ Repo Men, Relativity, 2010-03-22, retrieved 2016-06-24
  7. ^ "Narcos: Mexico Soundtrack", WhatSong, retrieved 2018-12-15
  8. ^ Yoo, Noah. "Major Lazer Sample Toots and the Maytals on New Song 'My Number': Listen". Pitchfork. Condé Nast. 06 Dec. 2016. Web. 15 Dec. 2016. <http://pitchfork.com/news/70266-major-lazer-sample-toots-and-the-maytals-on-new-song-my-number-listen/> Retrieved Dec. 15 2016.
  9. ^ Majorlazer. "Major Lazer & Bad Royale - My Number." YouTube. YouTube, 05 Dec. 2016. Web. 15 Dec. 2016. <https://www.youtube.com/watch?v=WX5i81l2LTE>
  10. ^ Major Lazer & Bad Royale. "My Number - Single". iTunes. itunes.apple.com. Released: Nov 29, 2016. Web. Retrieved 15 Dec. 2016. <https://itunes.apple.com/us/album/my-number-feat.-toots-single/id1180814535?app=itunes>
  11. ^ "British single certifications – Toots & The Maytals – 54-46 (Was My Number)". British Phonographic Industry.

Read other articles:

Koya Handa Informasi pribadiNama lengkap Koya HandaTanggal lahir 27 September 1998 (umur 25)Tempat lahir Prefektur Akita, JepangTinggi 1,79 m (5 ft 10+1⁄2 in)Posisi bermain PenyerangInformasi klubKlub saat ini Blaublitz AkitaKarier senior*Tahun Tim Tampil (Gol)2020– Blaublitz Akita * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Koya Handa (lahir 27 September 1998) adalah seorang pemain sepak bola Jepang.[1] Karier Koya Handa memulai ...

 

 

Emraan HashmiHashmi mempromosikan Ek Thi Daayan, 2013LahirEmraan Anwar Hashmi24 Maret 1979 (umur 44)Mumbai, Maharashtra, IndiaKebangsaanIndianPekerjaanPemeranTahun aktif2003–sekarangSuami/istriParveen Shahani ​(m. 2006)​Anak1 Emraan Anwar Hashmi (pelafalan [ɪmraːn ˈɦaːʃmiː]; lahir 24 Maret 1979) adalah seorang pemeran film asal India yang tampil dalam film-film Hindi.[1] Sepanjang kariernya, Hashmi meraih tiga nominasi Pengharga...

 

 

JibouKotaLetak JibouNegara RumaniaProvinsiSălajStatusKotaPemerintahan • Wali kotaBalanean Eugen (Partidul Social Democrat)Luas • Total35,78 km2 (1,381 sq mi)Populasi (2002) • Total11.306Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST)Situs webhttp://www.primariajibou.ro/ Jibou (Jerman: Siben, Hungaria: Zsibó) adalah kota yang terletak di provinsi Sălaj, Transilvania, Rumania. Pada tahun 2004, kota ini memiliki ju...

Komponen Laut BelgiaMarinecomponentcode: nl is deprecated   (Belanda)Composante marinecode: fr is deprecated   (Prancis)Marinekomponentecode: de is deprecated   (Jerman)Aktif1831–sekarangNegara BelgiaTipe unitAngkatan lautPeranPeperangan lautJumlah personel1.300Bagian dari Angkatan Bersenjata BelgiaMarkasZeebrugge, Bruges, OstendPertempuranPerang Dunia IPerang Dunia IITokohKomandan Laksamana Divisi Jan De BeurmeLaksamana Benelux Laksamana Madya René Tas (...

 

 

Marylise Lebranchu Marylise Lebranchu en 2015. Fonctions Ministre de la Décentralisation, de la Fonction publique et de la Réforme de l'État[1] 16 mai 2012 – 11 février 2016(3 ans, 8 mois et 26 jours) Président François Hollande Premier ministre Jean-Marc AyraultManuel Valls Gouvernement Ayrault I et IIValls I et II Prédécesseur Valérie Pécresse Successeur Annick Girardin Questeure de l’Assemblée nationale 26 juin 2007 – 19 juin 2012(4 ans, 11 mois e...

 

 

For the former film channel in the UK and Ireland, see The Studio (TV channel). Television channel STUDIOFinal logo, used between 2012 and 2015CountryAustraliaProgrammingLanguage(s)EnglishPicture format576i (SDTV 16:9)OwnershipOwnerSpecial Broadcasting ServiceHistoryLaunchedApril 2010ReplacedOvationClosed27 March 2015 (2015-03-27)Replaced byFoxtel ArtsFormer namesSTVDIO (2010–2012)LinksWebsiteOfficial website STUDIO was a subscription television arts channel available in Aust...

SMK Negeri 1 Kota SerangInformasiDidirikan2005[1]JenisNegeriAkreditasiANomor Statistik Sekolah401286204001Nomor Pokok Sekolah Nasional20605058Kepala SekolahDrs. H. Abdullah Armansyah,M.SiNIP:195911201998021001ModeratorJoeUniqueJumlah kelas54 RombelJurusan atau peminatan • Teknik Komputer Dan Jaringan  • MultiMedia  • Akomodasi Perhotelan  • Administrasi Perkantoran  • Akuntansi  • Marketing  • Jasa Boga  • Tata BusanaRe...

 

 

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Bagian dari seriIslam Rukun Iman Keesaan Allah Malaikat Kitab-kitab Allah Nabi dan Rasul Allah Hari Kiamat Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Sumber hukum Islam al-Qur'an Sunnah (Hadis, Sirah) Tafsir Akidah Fikih Syariat Sejarah Garis waktu Muhammad Ahlulbait Sahabat Nabi Khulafaur Rasyidin Khal...

 

 

The Family PlanPoster resmiSutradaraSimon Cellan JonesProduser David Ellison Dana Goldberg Don Granger Mark Wahlberg Stephen Levinson Ditulis olehDavid CoggeshallPemeran Mark Wahlberg Michelle Monaghan Zoe Colletti Van Crosby Saïd Taghmaoui Maggie Q Ciarán Hinds Penata musikKevin MatleySinematograferMichael BurgessPenyuntingTim PorterPerusahaanproduksi Apple Original Films Skydance Municipal Pictures DistributorApple TV+Tanggal rilis 15 Desember 2023 (2023-12-15) Durasi119 menit&...

Macedonian footballer (born 1985) Muharem Bajrami Personal informationDate of birth (1985-11-29) 29 November 1985 (age 38)Place of birth Skopje, SFR YugoslaviaHeight 1.85 m (6 ft 1 in)Position(s) MidfielderSenior career*Years Team Apps (Gls)2004–2005 Sloga Jugomagnat 2005–2006 Vëllazërimi 25 (15)2006–2007 FBK Kaunas 5 (0)2008 Šilutė 17 (4)2009–2012 Renova 95 (22)2013 Gomel 1 (0)2013 Shkëndija 10 (1)2014–2020 Shkupi 145 (16)International career2002 Macedonia ...

 

 

Canadian politician The HonourableSidney Earle SmithPC QCSecretary of State for External AffairsIn office13 September 1957 – 17 March 1959Prime MinisterJohn DiefenbakerPreceded byJohn DiefenbakerSucceeded byJohn Diefenbaker (Acting)Member of Parliamentfor Hastings—FrontenacIn office4 November 1957 – 17 March 1959Preceded byGeorge Stanley WhiteSucceeded byRod Webb7th President of the University of TorontoIn office1945–1957Preceded byHenry John CodySucceeded by...

 

 

Il fiume rossoUna scena del filmTitolo originaleRed River Lingua originaleinglese Paese di produzioneStati Uniti d'America Anno1948 Durata133 min (NTSC) Dati tecniciB/Nrapporto: 1,37:1 Generewestern RegiaHoward Hawks Soggettoda una storia di Borden Chase SceneggiaturaBorden Chase, Charles Schnee ProduttoreHoward Hawks Produttore esecutivoCharles K. Feldman Casa di produzioneUnited Artists, Monterey Productions Distribuzione in italianoZeus Film (1949) FotografiaRussell Harlan MontaggioChristi...

Hendra HidayatPotret resmi, 2023 Wakil Wali Kota Administrasi Jakarta Barat ke-10PetahanaMulai menjabat 21 Maret 2023Wali KotaUus KuswantoPendahuluYani Wahyu PurwokoPenggantiPetahanaWakil Wali Kota Administrasi Jakarta Timur ke-9Masa jabatan4 September 2020 – 21 Maret 2023Wali KotaMuhammad AnwarPendahuluUus KuswantoPenggantiIin Mutmainnah Informasi pribadiLahir19 November 1972 (umur 51)IndonesiaKebangsaanIndonesiaProfesiBirokratSunting kotak info • L �...

 

 

Disambiguazione – Se stai cercando altri omonimi, vedi Ferdinando Gonzaga (disambigua). Questa voce sull'argomento vescovi italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Ferdinando Tiburzio Gonzagavescovo della Chiesa cattolica  Incarichi ricopertiVescovo di Mantova (1671-1672)  Nato14 aprile 1611 a Vescovato Ordinato presbitero28 dicembre 1639 Nominato vescovo23 febbraio 1671 da ...

 

 

Aristobia approximator Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Aristobia Spesies: Aristobia approximator Aristobia approximator adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Aristobia, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada bat...

الاستفتاء الدستوري المصري 2019المكان مصرالتاريخ20–22 أبريل 2019 النتائج الأصوات % نعم 23٬416٬741 88٫83% لا 2٬945٬680 11٫17% الأصوات الصحيحة 26٬362٬421 96٫94% الأوراق البيضاء والأصوات المرفوضة 831٬172 3.06% إجمالي الأصوات 27٬193٬593 100.00% المصوتين المسجلين/نسبة المشاركة 61٬344٬503 44.33% جزء من سلسلة حولالسي�...

 

 

Parliamentary constituency in the United Kingdom, 1885–1997 For other uses, see Chelsea (disambiguation). ChelseaFormer Borough constituencyfor the House of CommonsChelsea 1868–18851868–1997SeatsTwo (1868–1885):One (1885–1997)Created fromMiddlesexReplaced byKensington and Chelsea Chelsea was a borough constituency, represented in the House of Commons of the Parliament of the United Kingdom. The constituency was created by the Reform Act 1867 for the 1868 general election, when it re...

 

 

Artikel ini telah dinilai sebagai artikel pilihan pada 15 Januari 2017 (Pembicaraan artikel) Nama ini menggunakan aturan penamaan Slavia Timur; nama patronimiknya adalah Ilyich dan nama keluarganya adalah Ulyanov. Vladimir LeninВладимир ЛенинLenin pada bulan Juli 1920, diambil oleh Pavel Zhukov. Ketua Dewan Komisar Rakyat Uni Soviet(Perdana Menteri Uni Soviet)Masa jabatan30 Desember 1922 – 21 Januari 1924PendahuluJabatan baruPenggantiAleksey RykovKe...

Lorong bawah tanah kuno di Banten (foto diambil pada tahun 1920-an) Terowongan adalah sebuah tembusan di bawah permukaan tanah atau gunung. Terowongan umumnya tertutup di seluruh sisi kecuali di kedua ujungnya yang terbuka pada lingkungan luar. Beberapa ahli teknik sipil mendefinisikan terowongan sebagai sebuah tembusan di bawah permukaan yang memiliki panjang minimal 150 meter, dan yang lebih pendek dari itu lebih pantas disebut underpass. Terowongan biasanya digunakan untuk lalu lintas kend...

 

 

Graph which remains connected when k or fewer nodes removed A graph with connectivity 4. In graph theory, a connected graph G is said to be k-vertex-connected (or k-connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest k for which the graph is k-vertex-connected. Definitions A graph (other than a complete graph) has connectivity k if k is the size of the smallest subs...