Αντιμεταθετικός πίνακας

Στα μαθηματικά, ιδίως στη γραμμική άλγεβρα και στη θεωρία πινάκων, ο αντιμεταθετικός πίνακας[1] χρησιμοποιείται για τη μετατροπή της διανυσματικής μορφής ενός πίνακα στη διανυσματική μορφή της αναστροφής του. Συγκεκριμένα, ο αντιμεταθετικός πίνακας K(m,n) είναι ο πίνακας nm × mn ο οποίος, για οποιονδήποτε πίνακα m × n A, μετασχηματίζει τον vec(A) σε vec(AT):

K(m,n) vec(A) = vec(AT).

Εδώ vec('A) είναι το mn × 1 διάνυσμα στηλών που προκύπτει από τη στοίβαξη των στηλών του A' η μία πάνω στην άλλη:

όπου A = [Ai,j]. Με άλλα λόγια, το vec(A) είναι το διάνυσμα που προκύπτει από τη διανυσματοποίηση του A σε σειρά στήλης-μεγάλης κλίμακας. Ομοίως, vec(AT) είναι το διάνυσμα που προκύπτει από τη διανυσματοποίηση του A σε σειρά γραμμής-πλειοψηφίας.

Στο πλαίσιο της κβαντικής θεωρίας πληροφοριών[2], ο αντιμεταθετικός πίνακας αναφέρεται μερικές φορές ως πίνακας ανταλλαγής ή τελεστής ανταλλαγής.[3]

Ιδιότητες

  • Ο αντιμεταθετικός πίνακας είναι ένας ειδικός τύπος του αντιμεταθετικού πίνακα και επομένως είναι ορθογώνιος. Ειδικότερα, ο K(m,n) είναι ίσος με , όπου είναι η αντιμετάθεση πάνω στο για την οποία
  • Η αντικατάσταση του A με το AT στον ορισμό του αντιμεταθετικού πίνακα δείχνει ότι K(m,n) = (K(n,m))T. Επομένως, στην ειδική περίπτωση m = n ο αντιμεταθετικός πίνακας είναι μια ενέλιξη και είναι συμμετρικός.
  • Η κύρια χρήση του αντιμεταθετικού πίνακα, και η πηγή του ονόματός του, είναι η αντιμετάθεση του γινομένου Κρόνεκερ: για κάθε m × n πίνακα A και κάθε r × q πίνακα B,
Αυτή η ιδιότητα χρησιμοποιείται συχνά στην ανάπτυξη των στατιστικών ανώτερης τάξης των πινάκων συνδιακύμανσης Wishart.[4]
  • Η περίπτωση n=q=1 για την παραπάνω εξίσωση δηλώνει ότι για οποιαδήποτε διανύσματα στήλης v,w μεγεθών m,r αντίστοιχα,
Αυτή η ιδιότητα είναι ο λόγος που ο πίνακας αυτός αναφέρεται ως «τελεστής ανταλλαγής» στο πλαίσιο της κβαντικής θεωρίας της πληροφορίας.
  • Δύο ρητές μορφές για τον αντιμεταθετικό πίνακα είναι οι εξής: αν er,j δηλώνει το j-οστό κανονικό διάνυσμα διάστασης r (δηλαδή το διάνυσμα με 1 στην j-th συντεταγμένη και 0 αλλού) τότε
  • Ο αντιμεταθετικός πίνακας μπορεί να εκφραστεί ως ο ακόλουθος σύνθετος πινάκας :
Όπου η εγγραφή p,q του n x m σύνθετος πινάκας Ki,j δίνεται από τη σχέση
Παραδείγματος χάριν,

Κωδικός

Τόσο για τετραγωνικούς όσο και για ορθογώνιους πίνακες m γραμμών και n στηλών, ο αντιμεταθετικός πίνακας μπορεί να παραχθεί με τον παρακάτω κώδικα.

Python

import numpy as np


def comm_mat(m, n):
    # determine permutation applied by K
    w = np.arange(m * n).reshape((m, n), order="F").T.ravel(order="F")

    # apply this permutation to the rows (i.e. to each column) of identity matrix and return result
    return np.eye(m * n)[w, :]

Εναλλακτικά, μια έκδοση χωρίς εισαγωγές:

# Kronecker delta
def delta(i, j):
    return int(i == j)


def comm_mat(m, n):
    # determine permutation applied by K
    v = [m * j + i for i in range(m) for j in range(n)]

    # apply this permutation to the rows (i.e. to each column) of identity matrix
    I = [[delta(i, j) for j in range(m * n)] for i in range(m * n)]
    return [I[i] for i in v]

MATLAB

function P = com_mat(m, n)

% determine permutation applied by K
A = reshape(1:m*n, m, n);
v = reshape(A', 1, []);

% apply this permutation to the rows (i.e. to each column) of identity matrix
P = eye(m*n);
P = P(v,:);

R

# Sparse matrix version
comm_mat = function(m, n){
  i = 1:(m * n)
  j = NULL
  for (k in 1:m) {
    j = c(j, m * 0:(n-1) + k)
  }
  Matrix::sparseMatrix(
    i = i, j = j, x = 1
  )
}

Παράδειγμα

Έστω ο ακόλουθος πίνακας :

έχει τις ακόλουθες διανυσματοδοτήσεις μείζονος στήλης και μείζονος γραμμής (αντίστοιχα):

Ο σχετικός σύνθετος πινάκας είναι

(όπου κάθε δηλώνει ένα μηδέν). Όπως αναμενόταν, ισχύουν τα ακόλουθα:

Δείτε επίσης

Εξωτερικοί σύνδεσμοι

Δημοσιεύσεις

  • Μαυρογιάννης, Ν. Σ. (Μαΐου 2016). «Μία εισαγωγή στους μιγαδικούς αριθμούς». Εκθέτης Φύλλα Μαθηματικής Παιδείας (16): 1-8. http://ekthetis.gr/Ekthetis016.pdf. 
  • Bronshtein, I. N.· Semendyayev, K. A. (29 Ιουνίου 2013). Handbook of Mathematics. Springer Science & Business Media. ISBN 978-3-662-21982-9. 
  • Gray, Lawrence F.; Flanigan, Francis J.; Kazdan, Jerry L.; Frank, David H.; Fristedt, Bert (1990), Calculus two: linear and nonlinear functions, Berlin: Springer-Verlag, σελ. 375, ISBN 0-387-97388-5, https://archive.org/details/calculustwolinea00flan/page/375 
  • Adkins, William A.; Weintraub, Steven H. (1992), Algebra: An Approach via Module Theory, Graduate Texts in Mathematics, 136, Springer-Verlag, ISBN 3-540-97839-9,  
  • Schwartz, Jacob T. (2001). Introduction to Matrices and Vectors. Mineola: Dover. σελίδες 126–132. ISBN 0-486-42000-0. 
  • Kubrusly, Carlos (2001). Elements of operator theory. Boston: Birkhäuser. ISBN 978-1-4757-3328-0. OCLC 754555941. 
  • Lang, Serge (1987), Linear Algebra (Third έκδοση), New York: Springer-Verlag, ISBN 0-387-96412-6 
  • Rudin, Walter (1976). Principles of Mathematical Analysis. Walter Rudin Student Series in Advanced Mathematics (3rd έκδοση). New York: McGraw–Hill. ISBN 978-0-07-054235-8. 

Παραπομπές

  1. Magnus, Jan R.; Neudecker, H. (1979). «The Commutation Matrix: Some Properties and Applications». The Annals of Statistics 7 (2): 381–394. ISSN 0090-5364. https://www.jstor.org/stable/2958818. 
  2. Nielsen, Michael A.· Chuang, Isaac L. (9 Δεκεμβρίου 2010). «Quantum Computation and Quantum Information: 10th Anniversary Edition». Higher Education from Cambridge University Press (στα Αγγλικά). Ανακτήθηκε στις 23 Ιουλίου 2024. 
  3. Watrous, John (2018). The Theory of Quantum Information. Cambridge University Press. σελ. 94. 
  4. von Rosen, Dietrich (1988). «Moments for the Inverted Wishart Distribution». Scand. J. Stat. 15: 97–109. 
  • Janko Bračič, Kolobar aritmetičnih funkcij (Ring of arithmetical functions), (Obzornik mat, fiz. 49 (2002) 4, pp. 97–108) (MSC (2000) 11A25)
  • Iwaniec and Kowalski, Analytic number theory, AMS (2004).