Ένας πίνακας προβολής που δεν είναι ορθογώνιος πίνακας προβολής ονομάζεται πλάγιος πίνακας προβολής.
Οι ιδιοτιμές ενός πίνακα προβολής έχουν μόνο δύο τιμές, 0 ή 1.
Παραδείγματα
Ορθογώνια προβολή
Για παράδειγμα, μία συνάρτηση που απεικονίζει το σημείο στο σημείο είναι μια ορθογώνια προβολή στο επίπεδο . Αυτή η συνάρτηση αντιπροσωπεύεται από τον πίνακαΗ επίδραση αυτού του πίνακα σε ένα τυχαίο διάνυσμα είναιΓια να αποδείξουμε ότι ο είναι πράγματι ένας πίνακας προβολής, δηλ. , υπολογίζουμεΗ επιπρόσθετη παρατήρηση ότι δείχνει ότι η προβολή είναι επίσης ορθή προβολή.
Πλάγια προβολή
Ένα απλό παράδειγμα μη ορθογώνιας (πλάγιας) προβολής είναιΜέσω πολλαπλασιασμού πινάκων, προκύπτει ότι επομένως είναι όντως πίνακας προβολής.
Ο πίνακας προβολής είναι πίνακας ορθής προβολής αν και μόνο αν γιατί μόνο τότε
Η απεικόνιση και ο πυρήνας μιας προβολής είναι συμπληρωματικά, όπως και και . Ο πίνακας είναι επίσης ένας πίνακας προβολής, καθώς η απεικόνιση και ο πυρήνας του είναι ο πυρήνας και η απεικόνιση του και αντίστροφα. Λέμε ότι είναι μια προβολή κατά μήκος του επάνω στον (πυρήνας/απεικόνιση) και είναι μια προβολή κατά μήκος του επάνω στον .
Φάσμα
Σε διανυσματικούς χώρους άπειρων διαστάσεων, το [./Https://en.wikipedia.org/wiki/Spectrum%20(functional%20analysis) φάσμα] μιας προβολής περιέχεται στο σύνολο (δηλαδή όλες οι γενικευμένες ιδιοτιμές ή τιμές του φάσματος είναι 0 ή 1), όπως καιΜόνο το 0 ή το 1 μπορεί να είναι ιδιοτιμή μιας προβολής. Αυτό σημαίνει ότι ένας πίνακας ορθής προβολής είναι πάντα ένας πίνακας μη αρνητικών ιδιοτιμών ([./Https://en.wikipedia.org/wiki/Definite%20matrix μονοπρόσημος]), δηλαδή όπου είναι η διάσταση του χώρου. Γενικά, οι αντίστοιχοι ιδιο-υποχώροι είναι (αντίστοιχα) ο πυρήνας και ο χώρος στηλών του πίνακα ή εύρος της προβολής. Η ανάλυση ενός διανυσματικού χώρου σε υποχώρους αθροίσματα δεν είναι μοναδική. Επομένως, για δεδομένο υποχώρο , μπορεί να υπάρχουν πολλές προβολές των οποίων το εύρος (ή ο πυρήνας) είναι .
Εάν μια προβολή είναι μη τετριμμένη, έχει ελάχιστο πολυώνυμο, το οποίο παραγοντοποιείται σε διακριτούς γραμμικούς παράγοντες, και έτσι ο είναι διαγωνοποιήσιμος.
Γινόμενο πινάκων προβολής
Το γινόμενο των πινάκων προβολής, γενικά δεν είναι πίνακας προβολής, ακόμα κι αν οι πίνακες είναι μεταξύ τους ορθογώνιοι. Εάν δύο πίνακες προβολής είναι αντιμεταθέσιμοι, τότε το γινόμενο τους είναι πίνακας προβολής, αλλά το λογικό αντίστροφο δεν ισχύει: το γινόμενο δύο μη αντιμεταθέσιμων πινάκων προβολής μπορεί να είναι πίνακας προβολής.
Εάν δύο ορθογώνιοι μεταξύτους πίνακες προβολής είναι αντιμεταθέσιμοι, τότε το γινόμενο τους είναι ένας πίνακας ορθής προβολής. Εάν το γινόμενο δύο πινάκων ορθής προβολής είναι ένας πίνακας ορθής προβολής, τότε οι δύο αρχικοί πίνακες ορθής προβολής είναι αντιμεταθέσιμοι.
Ισοδύναμα, Μια προβολή είναι ορθογώνια αν και μόνο αν είναι αυτοσυνημμένη . Χρησιμοποιώντας τις ιδιότητες του , έχουμε καιόπου είναι το εσωτερικό γινόμενο που σχετίζεται με τον . Επομένως, και είναι πίνακες ορθής προβολής [1]. Η άλλη περίπτωση, δηλαδή ότι αν είναι πίνακας ορθής προβολής τότε η προβολή αυτοσυνημμένη, προκύπτει από την σχέση για κάθε , οπότε .
Απόδειξη της ύπαρξης του πίνακα ορθής προβολής
Έστω ένας πλήρης μετρικός χώρος με εσωτερικό γινόμενο, και έστω ένας κλειστός γραμμικός υποχώρος του (επομένως, επίσης πλήρης).
(Αν είναι μιγαδικό διάνυσμα, τότε ). Αυτός ο τελεστής αφήνει το αμετάβλητο και εξαφανίζει όλα τα διανύσματα που είναι ορθογώνια προς , αποδεικνύοντας ότι είναι πράγματι η ορθή προβολή στη γραμμή που ορίζει το [1]. Ένας απλός τρόπος για να ελεγχθεί αυτό είναι να αναλυθεί ένα τυχαίο διάνυσμα ως το άθροισμα του προβαλλόμενου διανύσματος και μιας άλλης κάθετης σε αυτήν, . Εφαρμόζοντας την προβολή και τις ιδιότητες του εσωτερικού γινομένου παράλληλων και κάθετων διανυσμάτων, παίρνουμε
Η συνθήκη ορθοκανονικότητας μπορεί επίσης να απορριφθεί. Εάν είναι μια (όχι απαραίτητα ορθοκανονική) [./Https://en.wikipedia.org/wiki/Basis%20(linear%20algebra) βάση] με , και είναι ο πίνακας με τα τα παραπάνω διανύσματα ως στήλες, τότε η προβολή είναι [3][1]: Ο πίνακας ακόμα ενσωματώνει τον στον υποκείμενο διανυσματικό χώρο αλλά δεν είναι πλέον ισομετρία γενικά. Ο πίνακας είναι ένας «κανονικοποιητικός παράγοντας» που αποκαθιστά το σωστό μέγεθος των διανυσμάτων στα οποία εφαρμόζεται η ορθή προβολή. Για παράδειγμα, ο τελεστής πρώτου βαθμού δεν είναι προβολή αν Μετά τη διαίρεση με παίρνουμε την προβολή στον υποχώρο που ορίζεται από το διάνυσμα .
Αν είναι ένας αναστρέψιμος πίνακας και (δηλαδή, ο είναι ο πυρήνας του ), [4] ισχύει το εξής:Εάν η ορθογώνια συνθήκη ενισχυθεί σε όπου αναστρέψιμος, ισχύει το εξής:Όλοι αυτοί οι τύποι ισχύουν επίσης για μιγαδικούς χώρους εσωτερικού γινομένου, υπό την προϋπόθεση ότι χρησιμοποιείται η αναστοφος συζυγής του πίνακα , αντί του ανάστροφου . Περισσότερες λεπτομέρειες σχετικά με τα αθροίσματα των πινάκων προβολής στο βιβλίο των Banerjee and Roy (2014) [3], όπως και το βιβλίο του Banerjee (2004) [5] για την εφαρμογή των αθροισμάτων των πινάκων προβολής στη βασική [./Https://en.wikipedia.org/wiki/Spherical%20trigonometry σφαιρική τριγωνομετρία].
Οι προβολές ορίζονται από τον πυρήνα του πίνακα προβολής και τα διανύσματα που συνιστούν την βάση που ορίζει τον χώρο στηλών του πίνακα προβολής (το οποίο είναι το συμπλήρωμα του πυρήνα ή κενού χώρου). Όταν αυτά τα διανύσματα βάσης είναι ορθογώνια προς τον μηδενικό χώρο, τότε η προβολή είναι μια ορθή προβολή. Όταν αυτά τα διανύσματα βάσης δεν είναι ορθογώνια στον μηδενικό χώρο, η προβολή είναι μια πλάγια προβολή ή απλώς μια γενική προβολή.
Ένας τύπος αναπαράστασης πίνακα για έναν μη μηδενικό τελεστή προβολής
Έστω ένας πίνακας προβολής τέτοια που και ότι μη μηδενικός τελεστής. Έστω τα διανύσματα αποτελούν τη βάση για τον χώρο στηλών του πίνακα προβολής και ορίζουν τον πίνακα διαστάσεων . Επομένως ο ακέραιος , σε διαφορετική περίπτωση και είναι ο μηδενικός τελεστής. Ο χώρος στηλών και ο πυρήνας ή κενός χώρος είναι συμπληρωματικοί χώροι, επομένως ο κενός χώρος έχει διάσταση N-K. Από αυτό προκύπτει ότι το [./Https://en.wikipedia.org/wiki/Orthogonal%20complement ορθογώνιο συμπλήρωμα] του κενού χώρου έχει διάσταση K. Έστω ότι να σχηματίζουν μια βάση για το ορθογώνιο συμπλήρωμα του μηδενικού χώρου της προβολής και να ορίζουν τον πίνακα . Επομένως, ο πίνακας προβολής ( ) δίνεται από
Αυτή η έκφραση γενικεύει τον τύπο για τις ορθογώνιες προβολές που δόθηκε παραπάνω [3][1]. Μια τυπική απόδειξη αυτής της έκφρασης έχει ως ακολούθως. Οποιοδήποτε διάνυσμα στον διανυσματικό χώρο , μπορεί να εκφραστεί σαν , όπου η προβολή του και . Έτσι , και επομένως το βρίσκεται στον κενό χώρο (πυρήνα) του . Με άλλα λόγια, το διάνυσμα βρίσκεται στο χώρο στηλών του , επομένως για τυχαίο διάνυσμα διάστασης K, ενώ το διάνυσμα ικανοποιεί την σχέση , που προκύπτει από τον ορισμό του . Βάζοντας αυτές τις συνθήκες μαζί, για το διάνυσμα προκύπτει ότι . Εφόσον και οι δύο πίνακες και είναι πλήρους βαθμού K εξ' ορισμού, ο πίνακας διαστάσεων είναι αναστρέψιμος. Άρα από την εξίσωση , προκύπτει σαν λύση ότι . Επομένως, για οποιοδήποτε διάνυσμα και ως εκ τούτου .
Στην περίπτωση που ο είναι πίνακας ορθής προβολής, μπορούμε να ορίσουμε , και επομένως . Χρησιμοποιώντας αυτόν τον τύπο, μπορεί κάποιος εύκολα να ελέγξει ότι . Γενικά, εάν ο διανυσματικός χώρος ανήκει στο πεδίο των μιγαδικών αριθμών, τότε χρησιμοποιούμε τον ανάστροφο συζυγή, οπότε ο πίνακας προβολής ακολουθεί τον τύπο . Υπενθυμίζεται ότι με την χρήση του [./Https://en.wikipedia.org/wiki/Moore-Penrose%20inverse ψευδοανάστροφου πίνακα Moore–Penrose], μπορεί να οριστεί ο . Αφού ο είναι πλήρους βαθμού, προκύπτει ότι .
Ιδιάζουσες Τιμές
Αξίζει να σημειωθεί ότι είναι επίσης προβολή. Οι μοναδικές τιμές του και μπορεί να υπολογιστεί με χρήση της [./Https://en.wikipedia.org/wiki/Orthonormal%20basis ορθοκανονική βάση] του . Έστω μία μια ορθοκανονική βάση του και το [./Https://en.wikipedia.org/wiki/Orthogonal%20complement ορθογώνιο συμπλήρωμα] του . Οι ιδιάζουσες τιμές του πίνακα παρίστανται από τις θετικές τιμές . Επομένως, οι ιδιάζουσες τιμές του είναι [6]:και οι ιδιάζουσες τιμές του είναιΑυτό σημαίνει ότι οι μεγαλύτερες ιδιάζουσες τιμές του και είναι ίσες, και έτσι η [./Https://en.wikipedia.org/wiki/Matrix%20norm ενέργεια (matrix norm) του πίνακα] των λοξών προβολών είναι η ίδια. Ωστόσο, η [./Https://en.wikipedia.org/wiki/Condition%20number ευαισθησία] ικανοποιεί τη σχέση , και επομένως δεν είναι απαραίτητα ίση.
Εύρεση προβολής με εσωτερικό γινόμενο
Έστω ένας διανυσματικός χώρος (στην παρούσα περίπτωση ένα επίπεδο), ο οποίος ορίζεται από τα ορθογώνια διανύσματα . Έστω ένα τυχαίο διάνυσμα. Μπορεί να οριστεί μια προβολή του επάνω στον ως όπου οι επαναλαμβανόμενοι δείκτες αθροίζονται ([./Https://en.wikipedia.org/wiki/Einstein%20notation σημειογραφία αθροίσματος Αϊνστάιν]). Το διάνυσμα μπορεί να γραφτεί ως ορθογώνιο άθροισμα έτσι ώστε . μερικές φορές δηλώνεται ως . Υπάρχει ένα θεώρημα στη γραμμική άλγεβρα που δηλώνει ότι αυτό είναι η μικρότερη απόσταση (η [./Https://en.wikipedia.org/wiki/Perpendicular%20distance κάθετη απόσταση]) από προς τον και χρησιμοποιείται συνήθως σε τομείς όπως η μηχανική μάθηση.
όπου είναι ο [./Https://en.wikipedia.org/wiki/Rank%20(linear%20algebra) βαθμός] του . Εδώ είναι ο μοναδιαίος πίνακας διάστασης , και είναι ο μηδενικός πίνακας μεγέθους . Εάν ο διανυσματικός χώρος είναι σύνθετος και με εσωτερικό γινόμενο, τότε υπάρχει μια ορθοκανονική βάση στην οποία ο πίνακας P είναι [7]
που . Οι ακέραιοι και οι πραγματικοί αριθμοί καθορίζονται μοναδικά. Ας σημειωθεί ότι . Ο παράγοντας αντιστοιχεί στον μέγιστο αμετάβλητο υποχώρο στον οποίο λειτουργεί ως ορθογώνια προβολή (έτσι ώστε ο ίδιος ο P να είναι ορθογώνιος αν και μόνο αν ) και τα αντιστοιχούν στα στοιχεία που μορφοποιούν την πλάγια προβολή.
Προβολές σε κανονικούς διανυσματικούς χώρους
Όταν ο υποκείμενος διανυσματικός χώρος είναι ένας (όχι απαραιτήτως πεπερασμένος) [./Https://en.wikipedia.org/wiki/Normed%20vector%20space κανονικοποιημένος διανυσματικός χώρος], η ισχύς των αναλυτικών ιδιοτήτων, οι οποίες είναι άσχετες στην περίπτωση των πεπερασμένων διαστάσεων, πρέπει να εξεταστεί. Υποθέτουμε ότι είναι χώρος Μπάναχ.
Πολλά από τα αλγεβρικά αποτελέσματα που συζητήθηκαν παραπάνω παραμένουν σε ισχύ. Μια δεδομένη άμεση ανάλυση αθροίσματος του σε συμπληρωματικούς υποχώρους εξακολουθεί να καθορίζει μια προβολή, όπως και το αντίστροφο. Αν το είναι το [./Https://en.wikipedia.org/wiki/Direct%20sum άμεσο άθροισμα] , τότε ο τελεστής που ορίζεται από την προβολή , εξακολουθεί να είναι μια προβολή με χώρο και πυρήνα . Είναι επίσης σαφές ότι . Αντίθετα, εάν η είναι προβολή στο , δηλ. , τότε επαληθεύεται εύκολα ότι . Με άλλα λόγια, είναι επίσης μια προβολή. Η σχέση υποδηλώνει και είναι το άμεσο άθροισμα .
Ωστόσο, σε αντίθεση με την περίπτωση των πεπερασμένων διαστάσεων, οι προβολές στην γενική περίπτωση, δεν χρειάζεται να είναι [./Https://en.wikipedia.org/wiki/Bounded%20operator συνεχείς]. Αν ένας υποχώρος του δεν είναι κλειστός στην κανονική τοπολογία, τότε η προβολή στον δεν είναι συνεχής. Με άλλα λόγια, το εύρος μιας συνεχούς προβολής πρέπει να είναι ένας κλειστός υποχώρος. Επιπλέον, ο πυρήνας μιας συνεχούς προβολής (στην πραγματικότητα, ενός συνεχούς γραμμικού τελεστή γενικά) είναι κλειστός. Έτσι, μια συνεχής προβολή αναλύει τον σε δύο συμπληρωματικούς κλειστούς υποχώρους: .
Το αντίστροφο ισχύει επίσης, αλλά με μια πρόσθετη παραδοχή. Έστω είναι ένας κλειστός υποχώρος του . Αν υπάρχει κλειστός υποχώρος έτσι ώστε X = U ⊕ V, τότε η προβολή με υποχώρο και πυρήνα είναι συνεχής. Αυτό προκύπτει από το [./Https://en.wikipedia.org/wiki/Closed%20graph%20theorem θεώρημα κλειστού γραφήματος]. Έστω xn → x και Pxn → y. Πρέπει να αποδειχθεί ότι . Αφού ο είναι κλειστός και {Pxn} ⊂ U, το y βρίσκεται μέσα στον , δηλ. Py = y. Επίσης, xn − Pxn = (I − P)xn → x − y. Επειδή ο είναι κλειστός και {(I − P)xn} ⊂ V, έχουμε , δηλ. , που αποδεικνύει τον ισχυρισμό.
Το παραπάνω επιχείρημα κάνει χρήση της υπόθεσης ότι και τα δύο και είναι κλειστά. Σε γενικές γραμμές, δεδομένου ενός κλειστού υποχώρου , δεν χρειάζεται να υπάρχει συμπληρωματικός κλειστός υποχώρος , αν και για τους χώρους Hilbert αυτό μπορεί πάντα να γίνει λαμβάνοντας το [./Https://en.wikipedia.org/wiki/Orthogonal%20complement ορθογώνιο συμπλήρωμα]. Για τους χώρους Μπάναχ, ένας μονοδιάστατος υποχώρος έχει πάντα έναν κλειστό συμπληρωματικό υποχώρο. Αυτό είναι μια άμεση συνέπεια του [./Https://en.wikipedia.org/wiki/Hahn-Banach%20theorem θεωρήματος Hahn-Banach]. Έστω να ορίζεται από το . Από τους Hahn-Banach, υπάρχει μια οριοθετημένη [./Https://en.wikipedia.org/wiki/Linear%20form γραμμική συνάρτηση] τέτοια ώστε φ(u) = 1. Ο ικανοποιεί την συνθήκη , δηλαδή είναι προβολή. Ο μη απειρισμός του του συνεπάγεται συνέχεια του και ως εκ τούτου είναι ένας κλειστός συμπληρωματικός υποχώρος του .
Εφαρμογές και περαιτέρω προβληματισμοί
Οι προβολές (ορθογώνιες και πλάγιες) παίζουν σημαντικό ρόλο στην υλοποίηση αλγορίθμων για ορισμένα προβλήματα γραμμικής άλγεβρας:
↑ 2,02,1Horn, Roger A.· Johnson, Charles R. (2013). Matrix Analysis, second edition. United Kingdom: Cambridge University Press. σελ. 223. ISBN9780521839402.
↑ 3,03,13,2Banerjee, Sudipto· Roy, Anindya (2014). Linear Algebra and Matrix Analysis for Statistics. U.S.A.: Chapman and Hall/CRC Texts in Statistical Science. σελ. 179-203. ISBN978-1420095388.
↑Banerjee, Sudipto (2004), «Revisiting Spherical Trigonometry with Orthogonal Projectors», The College Mathematics Journal35 (5): 375–381, doi:10.1080/07468342.2004.11922099
↑Brust, J. J.; Marcia, R. F.; Petra, C. G. (2020), «Computationally Efficient Decompositions of Oblique Projection Matrices», SIAM Journal on Matrix Analysis and Applications41 (2): 852–870, doi:10.1137/19M1288115
Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (1η έκδοση), Chapman and Hall/CRC, ISBN978-1420095388
Dunford, N.· Schwartz, J. T. (1958). Linear Operators, Part I: General Theory. Interscience.