Read other articles:
1991 novel by Poul Anderson This article is about the 1991 science fiction novel. For the artistically described twinkle of stars, see twinkling stars. For the scientifically described variability of stars, see variable star. Inconstant Star Cover of first editionAuthorPoul AndersonCover artistLarry ElmoreCountryUnited StatesLanguageEnglishSeriesMan-Kzin WarsGenreScience fictionPublisherBaen BooksPublication date1 January 1991 (1st edition)Media typePrint (Paperback)Pages314 (paperb...
American politician For other people with the same name, see William Phelps. William Walter PhelpsMember of the U.S. House of Representativesfrom New Jersey's 5th districtIn officeMarch 4, 1873 – March 3, 1875Preceded byGeorge A. HalseySucceeded byAugustus W. CutlerIn officeMarch 4, 1883 – March 3, 1889Preceded byJohn HillSucceeded byCharles D. BeckwithUnited States Ambassador to Austria-HungaryIn officeMay 5, 1881 – June 30, 1882PresidentJames Garfield Chester A...
Building in Ontario, CanadaSir John Carling BuildingGeneral informationStatusDemolishedArchitectural styleModernistAddress930 Carling AvenueTown or cityOttawa, OntarioCountryCanadaCoordinates45°23′39″N 75°42′39″W / 45.39417°N 75.71083°W / 45.39417; -75.71083Completed1967Closed2009DemolishedJuly 13, 2014, at 06:59 amOwnerPublic Works and Government Services CanadaTechnical detailsStructural systemReinforced concreteMaterialPrecast claddingFloor count11Floor ...
Two numbers without shared prime factors In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1.[1] Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1.[2] One says also a is prime to b or a is coprime with b. The numbers 8 and 9 are coprime, despite the fact that neither—considered ...
Samuel Morey (Connecticut, 23 Oktober 1762 - Vermont, 17 April 1843) adalah penemu asal Amerika yang menciptakan mesin pembakaran dalam dan seorang pionir kapal uap yang mengumpulkan 20 paten. Danau Morey di AS mengambil nama dari tokoh ini. Pranala luar (Inggris) Samuel Morey - Inventor Extraordinary (Inggris) Unsolved Mystery of Samuel Morey Diarsipkan 2007-03-11 di Wayback Machine. Pengawasan otoritas Umum Integrated Authority File (Jerman) ISNI 1 VIAF 1 WorldCat Perpustakaan nasional Amer...
本表是動態列表,或許永遠不會完結。歡迎您參考可靠來源來查漏補缺。 潛伏於中華民國國軍中的中共間諜列表收錄根據公開資料來源,曾潛伏於中華民國國軍、被中國共產黨聲稱或承認,或者遭中華民國政府調查審判,為中華人民共和國和中國人民解放軍進行間諜行為的人物。以下列表以現今可查知時間為準,正確的間諜活動或洩漏機密時間可能早於或晚於以下所歸�...
الأم تريزا (بالألبانية: Anjezë Gonxhe Bojaxhiu) معلومات شخصية اسم الولادة (بالألبانية: Anjezë Gonxhe Bojaxhiu) الميلاد 26 أغسطس 1910(1910-08-26)إسكوبية، ولاية قوصوه، الدولة العثمانية الوفاة 5 سبتمبر 1997 (87 سنة)كلكتا، البنغال الغربية، الهند سبب الوفاة قصور القلب الإقامة إسكوبية (1910–...
Perpisahan Santo Petrus dan Paulus, menampilkan para rasul tersebut memberikan ciuman kudus satu sama lain sebelum kemartiran mereka. (Alonzo Rodriguez, abad ke-16, Museo Regionale di Messina). Ciuman kudus adalah sebuah penyambutan Kristen tradisional kuno, yang terkadang disebut ciuman damai, ciuman persaudaraan (di kalangan laki-laki), atau cium persaudarian (di kalangan perempuan). Penyambutan semacam itu mengisyaratkan harapan dan berkait yang damai kepada penerima, dan meskipun dilakuka...
Public recreation area in Grays Harbor County, Washington, United States Ocean City State ParkOcean City State Park beach with people digging for clams in the distanceLocation in the state of WashingtonShow map of Washington (state)Ocean City State Park (the United States)Show map of the United StatesLocationGrays Harbor, Washington, United StatesCoordinates47°01′57″N 124°09′51″W / 47.03250°N 124.16417°W / 47.03250; -124.16417[1]Area170 acres (69...
County in North Carolina, United States County in North CarolinaYadkin CountyCountyYadkin County Courthouse FlagSealLogoMotto(s): Come for a visit, stay for a lifetimeLocation within the U.S. state of North CarolinaNorth Carolina's location within the U.S.Coordinates: 36°10′N 80°40′W / 36.16°N 80.67°W / 36.16; -80.67Country United StatesState North CarolinaFounded1850Named forYadkin RiverSeatYadkinvilleLargest communityYadkinvilleArea •...
Ski resort near Alpine County's Bear Valley, CA Bear Valley Mountain ResortA look down into Grizzly BowlBear Valley Mountain ResortLocation in CaliforniaShow map of CaliforniaBear Valley Mountain ResortLocation in the United StatesShow map of the United StatesLocationAlpine County, California, U.S.Nearest major cityAngels CampCoordinates38°29′31″N 120°02′38″W / 38.492°N 120.044°W / 38.492; -120.044Vertical1,900 ft (580 m)Top elevation8,500...
Australian basketball team This article is about the basketball team. For the former soccer club, see Melbourne United FC. Melbourne Tigers redirects here. For the NBL1 South club, see Melbourne Tigers (NBL1 South). Melbourne United 2023–24 Melbourne United seasonLeagueNBLFounded1984; 40 years ago (1984)HistoryMelbourne Tigers1984–2014Melbourne United2014–presentArenaJohn Cain ArenaCapacity10,500LocationMelbourne, VictoriaTeam coloursNavy, white, blue, grey ...
أمبيلوي الإحداثيات 41°00′25″N 23°22′09″E / 41.006944444444°N 23.369166666667°E / 41.006944444444; 23.369166666667 تقسيم إداري البلد اليونان[1] عدد السكان عدد السكان 343 (2021)763 (2001)492 (1991)458 (2011) رمز جيونيمز 736900 تعديل مصدري - تعديل أمبيلوي (Άμπελοι) هي مدينة في سيرري في مقاطعة...
Schubertring di Jalan Lingkar Wina. Stubenring di Jalan Lingkar Wina. Ringstraße atau Jalan Lingkar Wina adalah adimarga besar yang juga merupakan jalan lingkar yang mengitari kawasan Innere Stadt (kota tua) di kota Wina, Austria. Jalan ini didirikan di atas situs yang pernah menjadi tempat berdirinya perbentengan kota pada abad pertengahan. Jalan ini dibangun setelah tembok kota diruntuhkan pada pertengahan abad ke-19. Banyak bangunan besar yang juga didirikan di pinggir Jalan Lingkar Wina ...
Thai League 1Sport Calcio TipoClub FederazioneFAT Paese Thailandia OrganizzatoreFederazione calcistica della Thailandia TitoloCampione di Thailandia CadenzaAnnuale Aperturaluglio Chiusuramaggio Partecipanti16 Retrocessione inThai League 2 Sito Internetwww.thaipremierleague.co.th/ StoriaFondazione1916 Detentore Buriram Utd Record vittorie Buriram Utd (10) Ultima edizioneThai League 2023-2024 Modifica dati su Wikidata · Manuale La Thai League 1 (in thailandese ทย�...
Proposed extra round in English football's Premier League Sepp Blatter, when president of FIFA, football's world governing body, strongly opposed the game 39 proposal. Game 39 or the international round was a proposed extra round of matches in the Premier League to be played at neutral venues outside England. The top football league in England, the Premier League, is played on a double round robin basis, where each of the 20 teams in the league plays each of the other 19 teams home and away, ...
An editor has nominated this article for deletion.You are welcome to participate in the deletion discussion, which will decide whether or not to retain it.Feel free to improve the article, but do not remove this notice before the discussion is closed. For more information, see the guide to deletion.Find sources: Nonperson – news · newspapers · books · scholar · JSTOR%5B%5BWikipedia%3AArticles+for+deletion%2FNonperson%5D%5DAFD Not to be confused with Un...
В Википедии есть статьи о других людях с такой фамилией, см. Уоллес; Уоллес, Генри. Генри Эгард Уоллесангл. Henry Agard Wallace 33-й Вице-президент США 20 января 1941 — 20 января 1945 Президент Франклин Рузвельт Предшественник Джон Нэнс Гарнер Преемник Гарри Трумэн 11-й Министр сельск...
Takna Jigme SangpoBiographieNaissance 2 septembre 1926TibetDécès 17 octobre 2020 (à 94 ans)TurbenthalNationalité chinoiseDomicile Suisse (à partir de 2002)Activités Enseignant, prisonnier politiquemodifier - modifier le code - modifier Wikidata Takna Jigme Sangpo ou Takna Jigme Zangpo (tibétain : སྟག་སྣ་འཇིགས་མེད་བཟང་པོ, Wylie : stag sna 'jigs med bzang po), né le 2 septembre 1926 à Chushul au Tibet[1], et mort le 1...
Тяговые расчёты — прикладная часть теории тяги поездов, в которой рассматриваются условия движения поезда и решаются задачи, связанные с определением сил, действующих на поезд, и законов движения поезда под воздействием этих сил. Содержание 1 История тяговых расчёто�...