1983 bewies er eine Vermutung von Jakob Nielsen (Nielsen Realisierungs Problem).[3][4] Sie fragt danach, ob eine endliche Untergruppe der Abbildungsklassengruppe einer Fläche als Isometriegruppe einer hyperbolischen Metrik auf der Fläche realisiert werden kann. Kerckhoff bewies, dass dies möglich ist. Ein vorheriger Beweisversuch von Saul Kravetz von 1959 stellte sich in den 1970er Jahren als fehlerhaft heraus.
Er schrieb mit William Floyd einen großen Teil der einflussreichen Vorlesungen (1978/79)[5] von Thurston Geometry and Topology of 3-Manifolds in Princeton nieder.[6]
Er befasste sich mit dem Ausbau und dem Erbringen strenger Beweise im Thurston-Programm, zum Beispiel bezüglich der hyperbolischen Dehn-Chirurgie von Thurston.
The geometry of Teichmüller space. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 665–678, PWN, Warsaw, 1984.
mit Daryl Cooper, Craig D. Hodgson Three-dimensional orbifolds and cone-manifolds (mit Nachwort von Sadayoshi Kojima), Mathematical Society of Japan Memoirs 5. Mathematical Society of Japan, Tokyo, 2000