Als Sichtweite oder auch Sicht im engeren Sinne bezeichnet man die maximale horizontale Entfernung, die es gerade noch erlaubt, ein dunkles Objekt in Bodennähe vor hellem Hintergrund zu erkennen. Sie wird auch als meteorologische Sichtweite bezeichnet. Sie wird im Wesentlichen durch Streuung in der Atmosphäre begrenzt.
Im Unterschied dazu gibt es noch anderen Sichtweiten:
Die geometrische Sichtweite wird durch die Erdkrümmung begrenzt und wird von den Höhenpositionen des Betrachters und des Ziels bestimmt.
Unter Berücksichtigung der atmosphärischen Refraktion ergibt sich daraus die optische oder geodätische Sichtweite.
Unter Berücksichtigung von Diffraktion ergeben sich im Radiobereich größere Reichweiten.
Unter Berücksichtigung zusätzlicher geografischer Sichthindernisse ergibt sich die geografische Sichtweite.
Die Sichtweite bei Nacht (Tragweite, Nachtsicht, Feuersicht), in der eine Lichtquelle von einem Beobachter gerade noch wahrgenommen wird, ist ebenfalls meteorologisch begrenzt. Hier spielt zusätzlich die Helligkeit der Lichtquelle und statt der Streuung die Absorption in der Atmosphäre eine Rolle.
Aerosole verursachen eine zusätzliche Lichtstreuung. Typische Bestandteile sind Wasser, Schwefelsäure und feste Partikel.
Die Streuung von Licht in der Atmosphäre reduziert den optischen Kontrast eines Objekts relativ zur Umgebung. Dieses Phänomen nennt man Lichtstreuung. Der Kontrast nimmt exponentiell mit der Entfernung und dem Absorptionskoeffizienten ab:
, daraus folgt:
Unter der Annahme, dass der Ausgangskontrast beträgt (Optimalfall) und dass für die Wahrnehmungen ein Mindestkontrast von (≙ 2 %)
erforderlich ist, besteht zwischen Sichtweite und Absorptionskoeffizienten folgende Beziehung:
Eine Sichtweite von 40 km entspricht unter Nutzung dieser Näherung einem Absorptionskoeffizienten von 4 / 40.000 m = 10−4 m−1.
Unter exzellenten Bedingungen (Föhnwetterlagen) sind in Mitteleuropa Fernsichten von 200 bis 250 km[2], im Himalaya bis 300 km[3] erreichbar.
Im Beispielbild nimmt der Kontrast der Berge zum Himmel mit zunehmender Entfernung ab. Die Bergkette im rechten Bild ist bei Nebel nicht mehr zu sehen.
Die meteorologische Sichtweite nimmt mit der Wellenlänge zu, da sowohl die Rayleigh-Streuung an den Molekülen der Luft wie auch die Streuung an winzigen Wassertröpfen abnimmt. Daher erhöht sich die Sichtweite zu längeren Wellenlängen hin (blau → rot → NIR → MIR). Beobachtungen mit Rotfilter und mit Infrarot-Film oder -Kamera erhöhen die effektive Sichtweite, insbesondere reduziert sich die Streuung an sehr kleinen Partikeln kleiner als die Lichtwellenlänge. Weiterhin ist die Lichtstreuung nicht isotrop, d. h. die Sicht gegen die Sonne ist deutlich geringer als mit der Sonneneinstrahlung.
Geodätische Sichtweite
Sichtweite zwischen einem erhöhten Punkt und einer Ebene
Erhöhter Punkt h und Ebene
Die Krümmung der Erde begrenzt die maximal mögliche Sichtweite.
Die Sichtweite von einem erhöhten Beobachtungspunkt aus (z. B. Gebäude, Turm, Berggipfel oder aber auch von Raumschiffen wie die ISS) hinab auf eine Ebene oder auf die Meeresoberfläche lässt sich mit Hilfe des Satzes des Pythagoras berechnen, da Sichtverbindung und Erdradius die Katheten eines rechtwinkligen Dreiecks bilden und der Abstand des erhöhten Punktes vom Erdmittelpunkt dessen Hypotenuse:
(1)
(2)
Nach der ersten binomischen Formel ergibt sich daraus:
(3)
Für terrestrische Beobachter ist , damit gegenüber vernachlässigbar. Daher lässt sich die Formel vereinfachen zu:
(4)
Die folgenden, dem praktischen Gebrauch dienenden Zugeschnittenen Größengleichungen (5a), (5b) und (5c) ergeben die einheitenlose Sichtweite in Kilometern, wobei die einheitenlose Höhe in Metern einzusetzen ist. Für einen Erdradius von 6370 km erhält man:
(5a)
Diese Berechnung berücksichtigt allerdings nicht die Refraktion der Atmosphäre. Diese krümmt die Lichtstrahlen zur Erde hin, verringert damit die effektive Krümmung der Erdoberfläche und lässt dadurch die Erde größer erscheinen. Der scheinbare Erdradius im optischen Bereich ist mit 7700 km etwa 20 % größer[5], die optische Sichtweite ist daher etwa 10 % größer als die geometrische Sichtweite:
(5b)
Der Effekt bewirkt allerdings nicht nur eine vergrößerte Sichtweite, sondern es kommt neben der Perspektive zu einer optischen Stauchung von Objekten am Horizont. Ein kugelförmiger Ballon in Horizontnähe erscheint oval.
Die genaue Größe dieses Effekts hängt vom Dichtegradienten, d. h. von Luftdruck, Temperatur und vom vertikalen Temperaturgradienten der Atmosphäre ab und berechnet sich genauer zu:
mit für eine irdische Atmosphäre
mit als Temperatur in K, als Druck in Pa und dem Temperaturgradienten in K/m.
Für die typischen Werte in Meereshöhe von 288,15 K (15 °C), 101325 Pa und −0,006 K/m ergeben sich:
und .
Diese Berechnung gilt allerdings nicht für bodennahe Schichten, da für diese der Temperaturgradient weitaus größer sein kann. Erst in einigen hundert Metern Höhe stellt sich ein Gradient von −0,006 … −0,007 K/m ein. Weiterhin reduziert sich der Effekt in höheren Schichten der Atmosphäre, was bei Sicht auf Berge im Hochgebirge oder bei Aufenthalt im Hochgebirge zu berücksichtigen ist, da sich dann Teile oder der gesamte Strahlweg in dünneren Schichten der Atmosphäre befinden. So reduziert sich der Faktor 3,9 auf etwa 3,8 auf Höhe des Mont Blanc und auf 3,7 auf Flughöhe von Passagiermaschinen.
Im Bereich von Radiowellen ist der scheinbare Erdradius etwa genauso groß wie im optischen Bereich[6][7][8]
Allerdings spielt im Radiowellenbereich weniger die direkte Sichtbarkeit eine Rolle, sondern vielmehr die Signaldämpfung.
Deshalb muss die Diffraktion berücksichtigt werden. Unter Annahme, dass die erste Fresnelzone nicht komplett verdeckt sein darf, damit sich die Dämpfung in Grenzen hält, erhält man als Näherung (jeweils in km, in m):
(5c)
Zwei erhöhte Punkte h1 und h2
Die Gleichung gilt für die Ausbreitung von Bodenwellen (nicht für Raumwellen mit Reflexionen an der Ionosphäre, die zusätzliche Reichweite verschafft). Für einen Langwellensender mit 3868 m erhält man eine Reichweite von knapp 680 km.
Sichtweite zwischen zwei erhöhten Punkten über eine Ebene hinweg
Sind Augen und Objekt über die Referenzebene erhoben, was schon durch die Augeshöhe der in der Ebene stehenden Person gegeben ist, so addieren sich die Abstände beider von der Stelle, wo die sie verbindende Tangente die Erdoberfläche berührt:
(6a)
beziehungsweise wieder einheitenlos:
. (6b)
Hinweise
Um die Sichtweite zu erreichen, ist es notwendig, dass sich das gesamte Gelände zwischen den Punkten unterhalb der Sichtlinie befindet; bezogen auf die ellipsoidische Höhe ist dies eine Parabel mit dem Scheitel im tiefsten Punkt, d. h. dem Schnittpunkt der beiden Katheten R und s, s1 bzw. s2.
Meteorologische Sichtbarkeit und Lichtverhältnisse/Sonnenstand werden hierbei nicht berücksichtigt.
Beispiele
Das rechte Bild entstand auf einer Blickhöhe von m.
Bei diesem Schiff am Horizont wird ein oberhalb der Wasserlinie befindlicher Teil des Schiffsrumpfs aufgrund der Erdkrümmung verdeckt. Daraus folgt bereits, dass das Schiff mehr als 5,6 km weit weg sein muss. Sind 5/10/15 Meter des Schiffsrumpfs nicht sichtbar, dann ist das Schiff weitere 9/12/15 km weit entfernt. (Werte entstammen der folgenden Tabelle.)
Die Tabelle zeigt einige Werte für die maximale optische Sichtweite unter Berücksichtigung der atmosphärischen Refraktion nach Formel (6b). Daran wird die Bedeutung der Höhe des Ausgucks von Schiffen deutlich: Von einem 15 m hohen Mast kann der Beobachter ein Schiff in 15 km Entfernung in kompletter Größe sehen. Umgekehrt sieht die Wache dort von 0 m Höhe aus am Horizont nur den Ausguck des anderen Schiffes.
Optische Sichtweiten s für Sichthöhen h atmosphärischen Refraktion berücksichtigt für h ≥ 1000 m dünner werdende Atmosphäre berücksichtigt
Atmosphärische Effekte werden reduziert, da steiler durch die Atmosphäre geschaut wird.
Die Näherung der Gleichung (4) ist für größeren Höhen nicht mehr zulässig.
Es kann ein Mindestwinkel α gefordert werden, unter dem Objekte auf der Erde zu sehen sind.
Die Sichtweite kann statt in Kilometern in Nautische Meilen, als Winkel β in Bogengrad oder Radian oder als Fläche bzw. Prozentsatz der Erdoberfläche angegeben werden.
Diesmal führen wir die Berechnung mit Hilfe des Sinussatzes durch:
, daraus folgt: . (7)
Bekannt sind zwei Seiten x1 = R und x2 = R + h sowie der der größeren Seite x2 gegenüberliegende Winkel ω2 = 90° + α.
Den gesuchten Winkel βα erhält man unter Nutzung des Innenwinkel-Satzes:
, (8)
(9)
Für eine Elevation von α = 0°, wenn die Oberfläche gerade am Rand zu erkennen sein soll, vereinfacht sich (9) zu:
. (10)
Aus β (kann β0 oder βα sein) kann die Sichtweite in Kilometer oder Nautischen Meilen berechnet werden (β in Radian, Radius in gewünschter Einheit):
(11)
oder die sichtbare Erdoberfläche durch Berechnung des Kugelsegments:
(12)
oder der Flächenanteil der Erde durch Division durch die Gesamtkugeloberfläche 4πR2:
. (13)
Beispiele
Aus einer Flughöhe von h = 10 km sieht ein Pilot einen Bereich auf der Erde von 2β0 = 2 · 3,2° = 6,4°, entsprechend einem Kreis mit 713 km Durchmesser. Den Randbereich erkennt er nur streifend. Bei einem Mindest-Elevationswinkel von α = 10° reduziert sich der Winkelbereich auf 2βα = 2 · 0,5° = 1,0°, entsprechend einem Kreis mit 111 km Durchmesser.
Ein geostationärer Satellit in h = 35.800 km Höhe erfasst maximal einen Bereich von 2β0 = 2 · 81,3° = 162,6°.
Für Beobachter außerhalb der Atmosphäre und für Objekte in Meereshöhe kann die Refraktion in der Atmosphäre am besten durch korrigierte Werte von α berücksichtigt werden.
Die Korrektur entspricht der Astronomischen Refraktion der bodennahen Schichten, nur mit umgekehrtem Strahlweg.
wobei die Horizontdistanz in Grad und der Kotangens mit dem Argument in Grad ist. Der Wert gibt die Korrektur in Winkelminuten an.
α
αkorr
α
αkorr
α
αkorr
00°
−0,57°
02°
1,70°
10°
09,91°
00,5°
+0,02°
03°
2,76°
15°
14,94°
01°
+0,59°
05°
4,84°
20°
19,95°
Geografische Sichtweite
Die geografische Sichtweite hängt von der Höhe des Beobachtungsortes und der Topologie seiner näheren und ferneren Umgebung ab. Daneben können auch Bebauung und Bewuchs und somit auch die Jahreszeit eine erhebliche Rolle spielen.
Reines Meerwasser hat im Bereich des sichtbaren Lichts eine Extinktionslänge1/σ von etwa 1,7 m (λ = 700 nm, langwelliges rot) bis etwa 100 m (λ = 450 nm, blau). Bei Tauchgängen in Naturgewässern gilt eine Sichtweite von 40 m als außerordentlich gut. Die Sicht kann getrübt werden durch Schwebeteilchen (Plankton, Blütenstaub, Wüstensand), durch Schwemmteilchen in Strömungen (Flussmündung) oder durch Abwässer und die Einleitung chemischer Stoffe.
Sichtweite auf anderen Himmelskörpern mit fester Oberfläche
Keine oder dünne Atmosphäre
Auf Himmelskörpern mit keiner oder sehr dünner Atmosphäre gelten bei angepasstem Radius die gleichen Formeln wie auf der Erde, vorausgesetzt der Himmelskörper ist näherungsweise kugelförmig.
Körper
Radius
Sichtweite
Bemerkungen
Ceres
0480 km
Mond
1737 km
Merkur
2440 km
Mars
3390 km
Dünne Atmosphäre kann vernachlässigt werden. Staubstürme können meteorologische Sichtweite auf weniger als 1 km verringern.
Dichte Atmosphäre
Wäre die Atmosphäre der Erde knapp sechs Mal dichter als gegenwärtig, wäre die optische Sichtweite nicht nur um 10 % größer, sondern man könnte wesentlich weiter sehen, da sich Licht parallel zur Erdoberfläche ausbreiten würde.
Das in der Formel würde bei diesem Druck etwa gegen 1 gehen:
was gegen unendlich gehen lässt.
Himmelskörper mit noch dichterer Atmosphäre brechen Licht noch stärker zum Himmelskörper hin, so dass Wellenleiterstrukturen entstehen und der Horizont so weit angehoben wird, dass die wahrgenommene Oberfläche konkav wird. Dieser Effekt tritt in der dichten Atmosphäre der Venus auf. Allerdings gibt es auch dort eine maximale Sichtweite und einen Horizont, ab einer Grenz-Elevation verlässt der Blickstrahl die Venus. Siehe Venera 13.
↑unter Berücksichtigung der atmosphärischen Refraktion und der dünner werdenden Atmosphäre kann ein stehender Beobachter (aus Augenhöhe) ab einer Entfernung von mehr als 5 km nur noch Objekte wahrnehmen, die mindestens ... Meter hoch sind. Siehe Formel 6b weiter unten. Die Werte sind dazu der weiter unten stehenden Tabelle entnommen.
↑Christian Hirt, Sébastien Guillaume, Annemarie Wisbar, Beat Bürki, Harald Sternberg: Monitoring of the refraction coefficient in the lower atmosphere using a controlled set-up of simultaneous reciprocal vertical angle measurements. In: Journal of Geophysical Research. Band116, Nr. D21, 2. November 2010, doi:10.1029/2010JD014067.
↑JS28 Integration of Techniques and Corrections to Achieve Accurate Engineering - Jean M. Rüger: Refractive Index Formulae for Radio Waves. Auf: fig.net vom 19.–26. April 2002; zuletzt abgerufen am 27. Dezember 2020.
↑Wellenausbreitung. Auf: ivvgeo.uni-muenster.de; zuletzt abgerufen am 27. Dezember 2020.