Selbstsucht
|
Read other articles:
József SzájerMEP Member of the European ParliamentMasa jabatan1 July 2004 – 31 December 2020[1]Daerah pemilihanHungaryMember of the National AssemblyMasa jabatan2 May 1990 – 19 July 2004 Informasi pribadiLahir7 September 1961 (umur 62)Sopron, HungaryPartai politik HungarianFidesz (1988–2020) EUEuropean People's PartySuami/istriTünde HandóAnakFanniAlma materEötvös Loránd UniversitySunting kotak info • L • B József Szájer (la...
Benzamidenafil Names Preferred IUPAC name N-[(3,4-Dimethoxyphenyl)methyl]-2-[(1-hydroxypropan-2-yl)amino]-5-nitrobenzamide Other names Xanthoanthrafil Identifiers CAS Number 1020251-53-9 3D model (JSmol) Interactive image ChemSpider 8286399 MeSH C442640 PubChem CID 10110873 UNII B6ZMZ878RF InChI InChI=1S/C19H23N3O6/c1-12(11-23)21-16-6-5-14(22(25)26)9-15(16)19(24)20-10-13-4-7-17(27-2)18(8-13)28-3/h4-9,12,21,23H,10-11H2,1-3H3,(H,20,24)Key: ZISFCTXLAXIEMV-UHFFFAOYSA-NInChI=1/C19H23N3O6/c1-...
Philippine noodle dish KinalasKinalas dish from Bicol RegionAlternative namesPancit kinalasCourseMain dishPlace of originPhilippinesRegion or stateBicol RegionServing temperatureHotMain ingredientsNoodles, pork or beef head meat, pork or beef brains, spicesSimilar dishesBatchoy Media: Kinalas Kinalas is a Bicol dish consisting of noodles (pancit) garnished by scraped meat from pork or beef's head and other parts, enhanced with a thick deep-brown sauce coming from the brains of a cow...
Form of communication for marketing Several terms redirect here. For other uses, see AD (disambiguation) and Advertiser (disambiguation). For the racehorse, see Advertise (horse). For the English punk band, see The Adverts. For the QI episode Advertising, see List of QI episodes. For information about advertising on Wikipedia, see Wikipedia:Advertising. A commercial on the Berlin U-Bahn that reads: Did you know... that Wikipedia has more sister projects?, followed by an URL to Germany...
Pour les articles homonymes, voir Gernelle (homonymie). Gernelle Panorama. Blason Administration Pays France Région Grand Est Département Ardennes Arrondissement Charleville-Mézières Intercommunalité Ardenne Métropole Maire Mandat Cathy Ninin 2020-2026 Code postal 08440 Code commune 08187 Démographie Gentilé Gernellis [1] Populationmunicipale 316 hab. (2021 ) Densité 65 hab./km2 Géographie Coordonnées 49° 46′ 06″ nord, 4° 49′ 04″ e...
Hoka One OneIndustriPakaian olahraga Peralatan olahragaDidirikan2009; 15 tahun lalu (2009)PendiriNicolas MermoudJean-Luc DiardKantorpusatGoleta, CaliforniaWilayah operasiSeluruh duniaTokohkunciStefano Caroti, PresidentSteven Doolan, VPGretchen Weimer, CMOProdukSepatu atletikPendapatan US$1,41 miliar (2023)[1]IndukDeckers BrandsSitus webhoka.com Hoka One One (dipopulerkan sebagai HOKA) adalah sebuah perusahaan pakaian olahraga yang mendesain dan memasarkan sepatu lari. Perusahaan ...
ANTXR1 التراكيب المتوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 3N2N المعرفات الأسماء المستعارة ANTXR1, ATR, GAPO, TEM8, anthrax toxin receptor 1, ANTXR cell adhesion molecule 1 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 606410 MGI: MGI:1916788 HomoloGene: 12976 GeneCards: 84168 علم الوجود الجي...
Eiga Pretty Cure All Stars - Minna de utau♪ Kiseki no mahō!Tutte le Pretty Cure fino alla 13ª serie (versione CGI)Titolo originale映画 プリキュアオールスターズ みんなで歌う♪奇跡の魔法! Lingua originalegiapponese Paese di produzioneGiappone Anno2016 Durata70 min Rapporto1,78:1 Genereanimazione, fantastico, musicale RegiaYutaka Tsuchida SoggettoIzumi Tōdō SceneggiaturaIsao Murayama Casa di produzioneToei Animation MusicheHiroshi Takaki Art directorYosh...
لمعانٍ أخرى، طالع رابونزل (توضيح). هذه المقالة عن رابونزل (فيلم). لمعانٍ أخرى، طالع رابونزل. رابونزلTangled (بالإنجليزية) الشعارملصق رابونزل بالعربيّةمعلومات عامةالتصنيف فيلم ثلاثي الأبعاد — فيلم رسوم متحركة الصنف الفني القائمة ... فيلم موسيقي — حكاية خرافية س...
River in Toyama Prefecture, Japan This article is about the river in Toyama Prefecture. For the river in Chiba Prefecture, see Kurobe River (Chiba). Kurobe RiverKurobe-gawaThe river as it flows through Kurobe, Toyama. (March 2005)EtymologyJaponicNative name黒部川 (Japanese)LocationCountryJapanStateToyamaRegionChūbuDistrictShimoniikawaMunicipalitiesKurobe, Nyūzen, ToyamaPhysical characteristicsSourceMount Washiba • locationToyama, Toyama, Japan • ...
Peta menunjukkan lokasi Tacloban City Tacloban City merupakan nama kota di Filipina dan kota pelabuhan di Provinsi Leyte. Jembatan San Juanico terletak di kota ini. Pada tahun 2010, kota ini memiliki jumlah penduduk sebanyak 236.005 jiwa dan memiliki lebih dari 46.275 tempat tinggal. Kota ini memiliki angka kepadatan penduduk sebesar 1.170 jiwa/km². Pembagian wilayah Secara administratif Tacloban terbagi menjadi 138 barangay, yaitu: Barangay 2 Nula-tula (Barangay 3 & 3A) Libertad (Barang...
American rock band For the self-titled debut album, see New York Dolls (album).For the professional wrestling tag team, see Rick McGraw and Troy Graham. New York DollsNew York Dolls on TopPop in 1973. From left to right: Johnny Thunders, Sylvain Sylvain, Jerry Nolan, Arthur Kane, and David Johansen.Background informationOriginNew York City, U.S.GenresHard rockproto-punkglam rockpunk rockYears active1971–1976[1]2004–2011[2]LabelsMercuryRoadrunnerAtcoCleopatra[3]429P...
Drinking horn or cup For the band, see Rhyton (band). RhytonGolden rhyton from Iran's Achaemenid period, excavated at Ecbatana. At the National Museum of Iran.MaterialCeramic, metal, horn, stoneSizeCup-size for practical use, larger for ceremonial use, typically in a roughly conical shape caused by a spout or a pseudo-spout at the bottom.WritingMay be inscribed and otherwise decoratedCreatedPrehistoric times through the present Silver rhyton with goat protome and death of Orpheus, c. 42...
此條目需要补充更多来源。 (2023年9月15日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:撒拉威阿拉伯民主共和國 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 提示:此条目页的主题不是西撒哈拉。 撒拉威阿拉伯�...
Type of love that focuses on feelings In love redirects here. For other uses, see In Love. Not to be confused with Romance languages. For the identity, see Romantic orientation. This article is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic. Please help improve it by rewriting it in an encyclopedic style. (July 2018) (Learn how and when to remove this message) This art...
French novelist, publicist and journalist About in 1875. Caricature of About by André Gill, 1867. Edmond François Valentin About (14 February 1828 – 16 January 1885) was a French novelist, publicist and journalist. Biography About was born at Dieuze, in the Moselle département in the Lorraine region of France.[1] In 1848, he entered the École Normale, taking second place in the annual competition for admission in which Hippolyte Taine came first. Among his college c...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) دوري كرة القدم الإسكتلندي الدرجة الثانية 1948–49 تفاصيل الموسم دوري كرة القدم الاسكتلندي الدرجة الثانية...
入笠山 すずらんの里駅付近より見た夏の入笠山標高 1,955.10[1] m所在地 長野県伊那市、諏訪郡富士見町位置 北緯35度53分47秒 東経138度10分18秒 / 北緯35.89639度 東経138.17167度 / 35.89639; 138.17167座標: 北緯35度53分47秒 東経138度10分18秒 / 北緯35.89639度 東経138.17167度 / 35.89639; 138.17167[2]山系 赤石山脈 入笠山の位置 北緯35度53分47秒 東経13...
Quarter and ward of Monaco For other uses, see Monte Carlo (disambiguation). Quarter and ward in MonacoMonte Carlo Monte-Carlo (French)Munte Carlu (Monégasque)Quarter and wardA view of Monte CarloMonte Carlo in Monaco (ward shown)Monte CarloLocation in relation to EuropeCoordinates: 43°44′23″N 7°25′38″E / 43.73972°N 7.42722°E / 43.73972; 7.42722Country MonacoEstablished1 June 1866Government • TypePrincipality • Prince...
Abstract algebra concept The 5th roots of unity in the complex plane form a group under multiplication. Each non-identity element generates the group. In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses. In other words, if S {\displaystyle S} is a subset of a group G {\displaystyle G} , then ⟨ S ⟩...