Kakeya stellte 1917 die Aufgabe in der Ebene die minimale Fläche zu finden, auf der eine Nadel der Länge Eins kontinuierlich gedreht werden kann[2]. 1928 veröffentlichte Besikowitsch den Beweis, dass der Flächeninhalt beliebig klein sein kann.[3] Besikowitsch hatte bereits 1917 ein ähnliches Problem gelöst ohne Kenntnis von Kakeyas Arbeit (veröffentlicht 1920 in einer russischen Zeitschrift). Das Problem hat Anwendungen in unterschiedlichsten Gebieten der Mathematik von der Analysis zur Kombinatorik und Zahlentheorie und Verallgemeinerungen des Kakeya-Problems sind noch heute teilweise offen, wie die Kakeya-Vermutung: eine Besikowitsch-Menge (die eine Einheitsnadel in jeder Orientierung enthält) im n-dimensionalen euklidischen Raum hat mindestens Hausdorff-Dimension n (offen für n größer oder gleich 3).[4]
Kakeya ist auch für den Satz von Kakeya (1912/13) und Gustav Eneström (1893) bekannt: ein Polynom n-ten Grades mit reellen Koeffizienten hat seine Nullstellen in der Einheitskreisscheibe in der komplexen Ebene.[5]
↑Dargestellt in Edmund LandauDarstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Springer 1916 mit einer Korrektur zum Theorem von Adolf Hurwitz