Richardson-Extrapolation

Das Verfahren der Richardson-Extrapolation wurde von Lewis Fry Richardson (1881–1953) entwickelt. Es kann angewendet werden, wenn man bei der numerischen Lösung eines Problems aufgrund zweier verschiedener Diskretisierungen (mit den Schrittweiten und ) die Näherungen und für ein Problem hat, und diese Näherungen mit einem Verfahren -ter Ordnung berechnet worden sind.

Sind diese Voraussetzungen erfüllt, so ist die Extrapolation

eine bessere Näherung für das Ergebnis.

Sie wird zum Beispiel bei der Romberg-Integration angewendet. Die Methode wurde vor Richardson schon durch Takebe Katahiro bei seiner Berechnung von Pi verwandt (1723).

Literatur

  • Hans-Görg Roos, Hubert Schwetlick: Numerische Mathematik. Das Grundwissen für jedermann. Vieweg+Teubner Verlag, Stuttgart u. a. 1999, ISBN 3-519-00221-3, S. 125 (Mathematik für Ingenieure und Naturwissenschaftler).
  • Martin Hermann: Numerische Mathematik. 2. überarbeitete und erweiterte Auflage. Oldenbourg Wissenschaftsverlag, München u. a. 2006, ISBN 3-486-57935-5, S. 412.
  • Guido Walz: The History of Extrapolation Methods in Numerical Analysis. Universität Mannheim – Fakultät für Mathematik und Informatik, Mannheim 1991 (Fakultät für Mathematik und Informatik der Universität Mannheim – Manuskripte 130, ZDB-ID 263563-x), (Online-Version bei der UB Mannheim).