National Democratic Alliance (Indien)
|
Read other articles:
Duta Besar Amerika Serikat untuk RumaniaSegel Kementerian Dalam Negeri Amerika SerikatDicalonkan olehPresiden Amerika SerikatDitunjuk olehPresidendengan nasehat Senat Berikut ini adalah daftar Duta Besar Amerika Serikat untuk Rumania Daftar Eugene Schuyler Walker Fearn A. Loudon Snowden Truxtun Beale Eben Alexander William Woodville Rockhill Arthur S. Hardy Charles S. Francis Henry L. Wilson John Brinkerhoff Jackson John W. Riddle Horace G. Knowles Huntington Wilson Spencer F. Eddy John R. Ca...
American basketball player and coach George KingKing from The Monticola, 1962Personal informationBorn(1928-08-16)August 16, 1928Charleston, West Virginia, U.S.DiedOctober 5, 2006(2006-10-05) (aged 78)Naples, Florida, U.S.Listed height6 ft 0 in (1.83 m)Listed weight175 lb (79 kg)Career informationHigh schoolStonewall Jackson(Charleston, West Virginia)CollegeCharleston (1946–1950)NBA draft1950: 8th round, 89th overall pickSelected by the Chicago StagsPlaying care...
Architectural detail of Beehive Corner Beehive Corner 1849 B60076 Bee Hive corner opposite Waterhouse's corner, 1866Waterhouse Chambers survives little changed in 2013 At night, looking east towards Rundle Mall from King William Street The Beehive Corner is a landmark in the Adelaide city centre, on the north-eastern corner of King William Street and Rundle Street, centrally placed between the railway station and the city's shopping precinct. History The name gained currency from The Beehive...
Questa voce sull'argomento album di musica d'autore è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Luigi Tenco canta Tenco, De André, Jannacci, Bob Dylan, Mogolraccolta discograficaArtistaLuigi Tenco Pubblicazione1972 Durata26:30 GenereMusica d'autore EtichettaJoker SM 3427 Luigi Tenco - cronologiaAlbum precedenteSe stasera sono quiAlbum successivoAgli amici cantautori Luigi Tenco canta Tenco, De André, Jannacci, Bob Dylan, Mogol è un album postum...
Première Ligue de Soccer du Québec 2019 Competizione PLSQ Sport Calcio Edizione 8ª Date dal 4 maggio 2019al 1 settembre 2019 Luogo Canada, Québec Partecipanti 9 Formula Girone all'italiana Risultati Vincitore Blainville(3º titolo) Statistiche Miglior giocatore Bonano Gnenago[1] Miglior marcatore Felipe Costa De Souza[2] Incontri disputati 72 Gol segnati 259 (3,6 per incontro) Cronologia della competizione 2018 2020 Manuale La Prem...
48°28′44″N 135°02′47″E / 48.47889°N 135.04639°E / 48.47889; 135.04639 Lenin StadiumLocationKhabarovsk, RussiaCapacity15,200Opened1957TenantsFC SKA-Khabarovsk Lenin Stadium (Russian: Стадион имени Ленина) is a multi-use stadium in Khabarovsk, Russia. It is currently used mostly for association football matches and is the home ground of FC SKA-Khabarovsk. The stadium holds 15,200 people.[1][2] It is named after communist revo...
German mathematician and astronomer (1790–1868) August MöbiusBornAugust Ferdinand Möbius(1790-11-17)17 November 1790Schulpforta, Electorate of Saxony, Holy Roman EmpireDied26 September 1868(1868-09-26) (aged 77)Leipzig, Kingdom of Saxony, German ConfederationAlma materUniversity of LeipzigUniversity of GöttingenUniversity of HalleKnown forMöbius stripMöbius transformationsMöbius transformMöbius functionMöbius inversion formulaMöbius configurationMöbius–Kantor conf...
Main article: Spokane, Washington Panoramic map of Spokane, 1905 Neighborhoods in Spokane, Washington are officially grouped by the Spokane City Council into three main city council districts: 1, 2, and 3. Each city council district contains multiple, official neighborhoods that are recognized with a neighborhood council. Informally, neighborhoods are colloquially grouped by local geographical, geological, cultural, or historical features (such as South Hill, North Side, Five Mile, Hillyard, ...
Lambang kotamadya Faulbach adalah kotamadya di Miltenberg, Regierungsbezirk Unterfranken, Bayern, Jerman. Geografi Faulbach terletak di Sungai Main di jalur di mana sungai ini membentuk perbatasan dengan Baden-Württemberg, di Bayerischer Untermain. Di kotamadya ini terdapat 2 desa, yakni Breitenbrunn dan Faulbach . Sejarah Faulbach berada di bawah Keuskupan Agung Mainz namun berdasarkan Reichsdeputationshauptschluss 1803 menjadi bagian dari Kepangeranan Aschaffenburg yang baru dibentuk dan k...
Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: Sultan Ali Riayat Syah – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Sultan Ali Riayat Syah ata...
У этого термина существуют и другие значения, см. Абганерово. СелоАбганерово Флаг 48°04′46″ с. ш. 44°11′09″ в. д.HGЯO Страна Россия Субъект Федерации Волгоградская область Муниципальный район Октябрьский Сельское поселение Абганеровское История и география Осн�...
Tennis tournament2009 Medibank International SydneyDate11–17 JanuaryEdition117thSurfaceHard / outdoorLocationSydney, AustraliaVenueNSW Tennis CentreChampionsMen's singles David NalbandianWomen's singles Elena DementievaMen's doubles Bob Bryan / Mike BryanWomen's doubles Su-Wei Hsieh / Peng Shuai ← 2008 · Medibank International Sydney · 2010 → Men's singles defending champion Dmitry Tursunov The 2009 Medibank International Sydney was a tennis tournament pla...
Le bureau Mazarin est un bureau associé au cardinal Mazarin, principal ministre de Louis XIV de 1642 à 1661. Cette forme de bureau est un ancêtre du bureau de ministre. Contrairement à ce dernier, le bureau Mazarin n'a pas de tiroirs descendant jusqu'au sol. Il possède des pieds reliés par des entretoises en « X » ou en « H »[1]. Plusieurs bureaux Mazarin ont été conçus pour être employés en angle, avec un genou sous la surface d'écriture et un autre genou...
Diving unit of the Royal Australian Navy Clearance Diving BranchClearance Diving Branch BadgeActive1951–presentCountryAustraliaBranchRoyal Australian NavyTypeClearance divingRole Expeditionary Reconnaissance and Clearance Maritime Explosive Ordnance Disposal Underwater Damage Repair Counter-terrorism SizeTwo AUSCDTPart ofMine Warfare and Clearance Diving GroupGarrison/HQHMAS Waterhen, New South WalesHMAS Stirling, Western AustraliaNickname(s)BubbleheadsBubbliesMotto(s)United and Undau...
この項目では、山形・秋田県境にある鳥海山について説明しています。その他の鳥海山については「鳥海山 (曖昧さ回避)」をご覧ください。 鳥海山 南西から標高 2,236[1] m所在地 日本山形県飽海郡遊佐町・酒田市・秋田県由利本荘市・にかほ市位置 北緯39度05分57秒 東経140度02分56秒 / 北緯39.09917度 東経140.04889度 / 39.09917; 140.04889座標: 北緯39度05分57...
1993 2002 Élections législatives de 1997 dans les Alpes-de-Haute-Provence 2 sièges de députés à l'Assemblée nationale 25 et 1er juin 1997 Corps électoral et résultats Inscrits 102 195 Votants au 1er tour 70 918 69,39 % 1,1 Votes exprimés au 1er tour 67 184 Votants au 2d tour 76 630 75 % Votes exprimés au 2d tour 71 419 Gauche plurielle Liste Parti socialisteParti communiste françaisLes VertsMouvement des citoyensParti rad...
ريجينا الاسم الكامل Reggina Calcio SpA اللقب الأحمر الداكن تأسس عام 1914 الملعب ستاد أوريست كرانيلو ريدجو كالابريا، إيطاليا(السعة: 27،763) البلد إيطاليا الدوري الدوري الإيطالي الدرجة الثانية 2009-2010 الثالث عشر الإدارة الرئيس باسكيوال فوتي المدير الفني فيليبو انزاغي جانلوكا أتزوري �...
تيا معلومات شخصية الزوج سيتي الثاني عائلة الأسرة المصرية التاسعة عشر الحياة العملية المهنة سياسية تعديل مصدري - تعديل لمعانٍ أخرى، طالع تيا (توضيح). تيا أو تي، هي ملكة مصرية قديمة غير حاكمة أو زوجة ملك عاشت في عهد الأسرة التاسعة عشرة، و قد كانت الزوجة ال�...
У этого термина существуют и другие значения, см. Вома. КоммунаВомаVaumas 46°26′49″ с. ш. 3°37′51″ в. д.HGЯO Страна Франция Регион Овернь Департамент Алье Кантон Домпьер-сюр-Бебр Мэр Régy Cury(2008–2014) История и география Площадь 34,88 км² Высота центра 227–304 м Часовой пояс UTC...
Subgroup of an abelian group consisting of all elements of finite order In the theory of abelian groups, the torsion subgroup AT of an abelian group A is the subgroup of A consisting of all elements that have finite order (the torsion elements of A[1]). An abelian group A is called a torsion group (or periodic group) if every element of A has finite order and is called torsion-free if every element of A except the identity is of infinite order. The proof that AT is closed under the gr...