Ein Mikrosystem (oder mikro-elektromechanisches System, kurz MEMS) ist ein miniaturisiertes Gerät, eine Baugruppe oder ein Bauteil, dessen Komponenten kleinste Abmessungen im Bereich von 1 μm (Mikrometer) haben und als System zusammenwirken.[1]
Üblicherweise besteht ein Mikrosystem aus einem oder mehreren Sensoren, Aktoren und einer Steuerungselektronik auf einem Substrat bzw. Chip.[2] Dabei bewegt sich die Größe der einzelnen Komponenten im Bereich von wenigen Mikrometern. Geräte und Systeme, die weitere Größenordnungen darunter liegen, bezeichnen sich als Nanosysteme oder im Quantenbereich als Spintronik.
Die Mikrosystemtechnik ist die Lehre von der Entwicklung der Mikrosysteme, von den Techniken, Methoden und Prozessen zu deren Realisierung und Produktion.
Hinsichtlich des Begriffs Mikrosystem gibt es in der englischsprachigen Literatur keine einheitlichen Begriffe. Allgemein wird im englischen das Stichwort Microsystems oder eine der folgenden Abkürzungen genutzt:[3][4]
MEMS steht für micro-electro-mechanical systems oder
MOEMS (auch: MOMS) steht für micro-opto-electro-mechanical systems.
Auch: Optical MEMS
Auch: Optical Microsystems
Andere Begriffe, die im Zusammenhang stehen sind:
BioMEMS steht für die Anwendung von MEMS auf z. B. Zellbiologie bzw. derer Nachbargebiete[5]
Micromachines
MEFS wird verwendet für micro-electro-fluidic systems[6]
NEMS steht für nano-electro-mechanical systems
pMEMS wird verwendet für piezo-electric micro-electro-mechanical resonators[7]
RF-MEMS wird verwendet für Radio-Frequency-MEMS[8][9]
Hinweis: Die Schreibart ist normalerweise ohne Trennstrich üblich, wurde hier jedoch zur Verdeutlichung und Lesbarkeit gewählt.
Allgemeiner Aufbau
Mikrosysteme sind auf der Halbleitertechnik aufbauende Systeme, die um mechanische, optische, chemische (auch Fluidik) oder biologische Komponenten und Funktionen erweitert sind.[10] Dabei beschränken sich MEMS nicht nur auf CMOS-Technologie und die damit realisierte Logik, wie in der Mikroelektronik üblich, sondern zeichnen sich durch spezifische Verfahren und Prozessschritte, wie z. B. den „Bosch-Prozess“ oder LIGA aus.[11] Mikrosysteme nutzen nahezu jede Art von Werkstoffen wie Metalle, Halbleiter, Keramiken, Sol-Gel-Materialien, Kunststoffe und viele mehr. Häufig ist eine komplexe Integration mehrerer Komponenten mit Mikroelektronik (ASIC) gegeben,[3] so dass ein Mikrosystem u. a. eine Sensoreinheit sowie Messtechnik (Signalverarbeitung) aufweist.[12] Damit unterscheiden sich auch die Produktentwicklungszyklen von MEMS von Mikroelektronik, wo Entwicklungslaufzeiten von bis zu fünf Jahre möglich sind.[13] Spezialisierte MEMS-Hersteller bieten Foundry-Dienstleistungen im Sinne von F&E oder Pilotlinien für MEMS an oder agieren als vollintegrierte Hersteller (IDMs), die alle Leistungen inklusive Vermarktung anbieten, siehe dazu die Marktübersicht.
Geschichte
Die ersten Geräte (damals noch nicht „MEMS“ genannt) bzw. Herstellungsverfahren („micro-machining“) stammen aus den 1960er bzw. 1970 Jahren. Als Beispiel sei der „Transistor mit resonanter Gate-Elektrode“ (englisch: Resonant-Gate-Transistor, RGT) erwähnt.[14] Folgend dieser Entwicklung, wurden die mechanischen Eigenschaften von Silizium weiter erforscht und weiterentwickelt.[15] Zu den großen „Meilensteinen“ zählen MEMS zur Fahrdynamikregelung (ESC) und Sicherheit (Airbag), Inertialsensoren, Tintenstrahldruckköpfe usw. Derartige MEMS sind bis heute (Stand 2022) dominierende Marktgrößen.[16]
Vorteile
Mikrosysteme bieten gegenüber konventionellen „Makrosystemen“ vor allem Vorteile in der Kostenersparnis (geringer Verbrauch an Werkstoffen, Parallel-Fertigung) und in der Effizienz (geringer Energie- und Leistungsbedarf ermöglicht autonome Systeme).
Zudem bieten sie ein großes Funktionsspektrum, hohe Funktionsdichten, neue Funktionalität (Integration elektrischer und nichtelektrischer Funktionen). Durch die Integration und Miniaturisierung können „neue“ physikalische Effekte ausgenutzt werden, und die kurzen Informationswege führen zu kurzen Reaktionszeiten. Außerdem haben sie meist eine höhere Zuverlässigkeit als konventionelle Systeme, vor allem durch den Wegfall von Steckern und Kabeln.
Anwendungsgebiete
Der Einsatz von Mikrosystemen ist überall dort denkbar und sinnvoll, wo Sensoren/Aktoren und Elektronik zusammenarbeiten. Medizinprodukte sowie Produkte aus den Bereichen Sicherheitstechnik, Sport, Biowissenschaften und Logistik können mit Hilfe von Mikrosystemen vielseitiger, einfacher, intelligenter, kleiner und leistungsfähiger werden. Ein bekanntes Beispiel eines Mikrosystems aus der Forschung ist der noch nicht kommerziell erhältliche Millipede-Speicher von IBM (Stand April 2018).
Inertialsensoren
Eines der größten Anwendungsbereiche sind Inertialsensoren (Beschleunigungs- und Drehsensoren). In nahezu allen Smartphones sind ein oder mehrere Sensoren verbaut. Sie werden schon lange in Großserie gefertigt und werden unter anderem für die Auslösung von Airbags, für die Erkennung des freien Falles von Festplatten (für mobile Anwendungen) – sie erkennen hier, ob sich ein Gerät im freien Fall befindet, so dass der Lesekopf noch während des Sturzes in Parkposition gesetzt werden kann – oder als Lageerkennung in digitalen Fotokameras, Handhelds und modernen Eingabegeräten für Spielkonsolen genutzt. Ebenso werden sie in Foto- und Videokameras zur Realisierung mechanischer Bildstabilisatoren eingesetzt, um ein Verwackeln von Bildern zu vermeiden. Auch im Bereich ferngesteuerter Modelle werden die Sensoren in Form von Stabilisationssystemen eingesetzt.
Magnetometer
Die Magnetometer erlauben in z. B. Smartphones und Smartwatches eine Kompassanzeige oder das automatische Orientieren von Karten. Durch Sensordatenfusion von Magnetometer und Beschleunigungssensor lassen sich die sechs Freiheitsgrade eines Geräts erfassen.[17]
Optische Aktoren
Optische Anwendungen für Mikrosysteme sind beispielsweise Bausteine in Videoprojektoren, die zur Darstellung von Bildern genutzt werden (siehe Mikrospiegelaktor).
Ein weiteres Anwendungsgebiet sind MEMS-Oszillatoren als platzsparender Ersatz für Quarzoszillatoren. Solche MEMS-Oszillatoren werden von den Herstellern wie zum Beispiel SiTime oder SiliconLabs angeboten.
Lautsprecher
Ein noch relativ junger Anwendungsbereich für Mikrosysteme sind Lautsprecher. Erst in den vergangenen Jahren wurde die MEMS-Technologie für Lautsprecher verstärkt in die Betrachtung gezogen, obwohl bereits in den 1990er Jahren an Lautsprechern auf Basis der MEMS-Technologie geforscht wurde. Der erste piezoelektrische MEMS-Lautsprecher wurde im Jahr 1995 von Lee et al. vorgestellt. Weitere Ansätze stammen von Harradine et al. im Jahr 1996 mit einem elektrodynamischen MEMS-Lautsprecher sowie von Loeb et al. im Jahr 1999 mit einem zum Patent angemeldeten elektrostatischen MEMS-Lautsprecher. Seit den frühen 2000er Jahren forschen verschiedene Institute der Fraunhofer-Gesellschaft an Lautsprechern auf MEMS-Basis. Das Fraunhofer ISIT und Fraunhofer IPMS verfolgen innerhalb verschiedener Forschungsprojekte unterschiedliche technologische Ansätze, wobei das Fraunhofer IDMT als Entwicklungspartner für die Signalansteuerung der MEMS-Lautsprecher zuständig ist. Erste MEMS-Lautsprecher sind bereits auf dem Markt erhältlich und werden u. a. durch die Firma USound vertrieben.[21] Fokussiert werden vorerst insbesondere Anwendungsgebiete wie In-Ear-Kopfhörer, Hörgeräte.[22][23] Ein weiteres Anwendungsgebiet von MEMS-Lautsprechern stellen sogenannte Audio-Brillen dar, um das Audiosignal über die Luft zu übertragen und nicht über den Weg der Knochenschallleitung.[24]
Mikrobolometer
Mikrobolometer können auf Grundlage von MEMS-Prozessen erfolgen.[25] Mikrobolometer-Arrays können als Grundlage von Wärmebildkameras verwendet werden.
Drucksensoren
Mittels MEMS können Drucksensoren und Barometer hergestellt werden. Das eigentliche Sensorelement kann resistiv[26] (Ausnutzung eine Änderung des elektrischen Widerstands) oder kapazitiv[27] (Ausnutzung eine Änderung der elektrischen Kapazität) sein.
Laut dem 8. Bericht Status of the MEMS Industry von Yole Développement existierten 2012 ca. 350 MEMS entwickelnde oder produzierende Unternehmen für ca. 200 verschiedene Anwendungen. Damals wurde erwartet, dass der MEMS-Markt laut Yole bis 2019 durchschnittlich im Volumen um 20 % und im Umsatz um 13 % pro Jahr auf 24 Mrd. US-Dollar wachsen würde.[28][29] Tatsächlich betrug der Marktumfang 2020 12,1 Mrd. US-Dollar mit einer erwarteten Entwicklung auf 18,2 Mrd. US-Dollar im Jahr 2026.[30]
Integrierte Hersteller mit MEMS-Produkten (Beispiele)
Die Top-3 (Stand 2015) nach Umsatz (Analyse von IHS Markit) sind in Klammern markiert.[31]
Hinweis: Die Liste erhebt keinen Anspruch auf Vollständigkeit. Teilweise bieten Integrierte Hersteller auch Foundry-Services an. Das Marktumfeld ist durch eine hohe Dynamik geprägt (Innovationen, Merger & Acquisitions), daher sind frühere Unternehmen häufig Teil anderer Unternehmen geworden. Die Liste präsentiert nicht alle Akquisen oder Veränderungen.
Unternehmen oder Andere mit Spezialisierung in MEMS-Design und Produkten (Fabless)
Hinweis: Die Liste erhebt keinen Anspruch auf Vollständigkeit. Das Marktumfeld ist durch eine hohe Dynamik geprägt (Innovationen, Merger & Acquisitions), daher sind frühere Unternehmen häufig Teil anderer Unternehmen geworden. Die Liste präsentiert nicht alle Akquisen oder Veränderungen.
Hinweis: Die Liste erhebt keinen Anspruch auf Vollständigkeit. Teilweise bieten Foundry-Anbieter auch Produkte an. Das Marktumfeld ist durch eine hohe Dynamik geprägt (Innovationen, Merger & Acquisitions), daher sind frühere Unternehmen häufig Teil anderer Unternehmen geworden. Die Liste präsentiert nicht alle Akquisen oder Veränderungen.
Weitere Foundry-Anbieter können bspw. über die Interessensgesellschaften SEMI oder Silicon Saxony gefunden werden.
Lars Voßkämper: Automatisierung im MEMS Entwurf: Kohärente Layoutsynthese und Modellbildung von skalierbaren mikroelektromechanischen Strukturen. VDM Verlag Dr. Müller, Saarbrücken 2008, ISBN 978-3-639-04923-7.
↑Jan G. Korvink, Oliver Paul: MEMS: A Practical Guide of Design, Analysis, and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg 2006, ISBN 3-540-21117-9, doi:10.1007/978-3-540-33655-6 (englisch).
↑James B. Angell, Stephen C. Terry, Phillip W. Barth: Silicon Micromechanical Devices. In: Scientific American. Band248, Nr.4, 1983, ISSN0036-8733, S.44–55, JSTOR:24968874 (englisch).
↑ abAndreas C. Fischer, Fredrik Forsberg, Martin Lapisa, Simon J. Bleiker, Göran Stemme, Niclas Roxhed, Frank Niklaus: Integrating MEMS and ICs. In: Microsystems & Nanoengineering. Band1, Nr.1, 28. Mai 2015, ISSN2055-7434, S.1–16, doi:10.1038/micronano.2015.5 (englisch, nature.com [abgerufen am 17. Dezember 2022]).
↑Huikai Xie, Frederic Zamkotsian: Editorial for the Special Issue on Optical MEMS. In: Micromachines. Band10, Nr.7, 7. Juli 2019, ISSN2072-666X, S.458, doi:10.3390/mi10070458, PMID 31284629 (englisch, mdpi.com [abgerufen am 17. Dezember 2022]).
↑Georg E. Fantner, Pascal D. Odermatt, Haig Alexander Eskandarian: Applications of MEMS to Cell Biology. In: Springer Handbook of Nanotechnology. Springer Berlin Heidelberg, Berlin, Heidelberg 2017, ISBN 978-3-662-54355-9, S.587–616, doi:10.1007/978-3-662-54357-3_19 (englisch).
↑Tianhao Zhang, Krishnendu Chakrabarty, Richard B. Fair: A Hierarchical Design Platform for Microelectrofluidic Systems (MEFS). In: MEMS/NEMS. Springer US, Boston, MA 2006, ISBN 978-0-387-24520-1, S.197–234, doi:10.1007/0-387-25786-1_7 (englisch).
↑Inder J. Bahl, Prakash Bhartia: Microwave Solid State Circuit Design. 2. Auflage. Wiley-Interscience, New York 2003, ISBN 0-471-20755-1, S.771ff. (englisch).
↑J. Iannacci: RF-MEMS: an enabling technology for modern wireless systems bearing a market potential still not fully displayed. In: Microsystem Technologies. Band21, Nr.10, Oktober 2015, ISSN0946-7076, S.2039–2052, doi:10.1007/s00542-015-2665-6 (englisch).
↑Alissa M. Fitzgerald, Carolyn D. White, Charles C. Chung: The Opportunities and Challenges of MEMS Product Development. In: MEMS Product Development. Springer International Publishing, Cham 2021, ISBN 978-3-03061708-0, S.3–8, doi:10.1007/978-3-030-61709-7_1 (englisch).
↑H.C. Nathanson, W.E. Newell, R.A. Wickstrom, J.R. Davis: The resonant gate transistor. In: IEEE Transactions on Electron Devices. Band14, Nr.3, März 1967, ISSN1557-9646, S.117–133, doi:10.1109/T-ED.1967.15912 (englisch, ieee.org [abgerufen am 19. Dezember 2022]).
↑K. E. Petersen: Silicon as a mechanical material. In: Proceedings of the IEEE. Band70, Nr.5, Mai 1982, ISSN1558-2256, S.420–457, doi:10.1109/PROC.1982.12331 (englisch, ieee.org [abgerufen am 19. Dezember 2022]).
↑Jiri Marek, Udo-Martin Gómez: MEMS (Micro-Electro-Mechanical Systems) for Automotive and Consumer Electronics. In: Chips 2020. Springer Berlin Heidelberg, Berlin, Heidelberg 2011, ISBN 978-3-642-22399-0, S.293–314, doi:10.1007/978-3-642-23096-7_14 (englisch).
↑TDK Agrees to Buy InvenSense for About $1.3 Billion in Cash. In: Bloomberg.com. 21. Dezember 2016 (englisch, bloomberg.com [abgerufen am 19. Dezember 2022]).
PT Bank Maspion Indonesia TbkKantor pusat di SurabayaNama dagangBank MaspionJenisPerusahaan publikKode emitenIDX: BMASIndustriJasa keuanganDidirikan6 November 1989; 34 tahun lalu (1989-11-06)KantorpusatSurabaya, IndonesiaWilayah operasiIndonesiaProdukGiroTabunganDepositoKreditMerekDasyattPendapatanRp 900,997 milyar (2021)[1]Laba bersihRp 80,275 milyar (2021)[1]Total asetRp 14,234 triliun (2021)[1]Total ekuitasRp 1,331 triliun (2021)[1]PemilikKasikornbank (...
Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...
Ante Pavelić Poglavnik Negara Merdeka KroasiaMasa jabatan10 April 1941 – 8 Mei 1945Penguasa monarkiTomislav II (1941–1943)Perdana MenteriDirinya sendiri (1941–1943)Nikola Mandić (1943–1945) PendahuluJabatan didirikanPenggantiJabatan dihapuskanPerdana Menteri Negara Merdeka KroasiaMasa jabatan16 April 1941 – 2 September 1943Penguasa monarkiTomislav II PendahuluJabatan didirikanPenggantiNikola MandićPanglima Angkatan Bersenjata Negara Merdeka KroasiaMasa jabatan4 ...
Глиссирующая моторная лодка Катер Antares-8.80 с двумя подвесными моторами общей мощностью до 300 л. с. Мото́рная ло́дка — маломерное судно, оборудованное подвесным мотором. Наличие именно легкосъёмного подвесного мотора является единственным квалифицирующим признаком...
artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menamba...
Hereditary Grand Duchess of Hesse and by Rhine Cecilie of Greece and DenmarkHereditary Grand Duchess of Hesse and by RhinePrincess Cecilie in 1931Born(1911-06-22)22 June 1911Tatoi Palace, Tatoi, GreeceDied16 November 1937(1937-11-16) (aged 26)Ostend, BelgiumBurial23 November 1937Rosenhöhe, Darmstadt, GermanySpouse Georg Donatus, Hereditary Grand Duke of Hesse (m. 1931)Issue Prince Ludwig Prince Alexander Princess Johanna Unnamed child HouseGlücksb...
Кубическая гранецентрированная упаковка Гипотеза Кеплера — подтверждённая математическая гипотеза о плотнейшей упаковке шаров равного размера в трёхмерном пространстве: наибольшую среднюю плотность имеет гранецентрированная кубическая упаковка и упаковки, равн...
MVP della NFLSport Football americano Conferito daAssociated Press Fondazione1957 Assegnato aMiglior giocatore della stagione regolare della National Football League FrequenzaAnnuale DetentoreLamar Jackson Modifica dati su Wikidata · Manuale Il Premio di miglior giocatore dell'anno della NFL (MVP della NFL) viene assegnato al giocatore che maggiormente si è contraddistinto durante la stagione regolare della National Football League. Diverse testate giornalistiche e associazioni di sett...
1964 film by William Castle For other uses, see Straitjacket (disambiguation). Strait-JacketTheatrical release posterDirected byWilliam CastleWritten byRobert BlochProduced byWilliam CastleStarringJoan CrawfordCinematographyArthur E. ArlingEdited byEdwin H. BryantMusic byVan AlexanderColor processBlack and whiteProductioncompanyWilliam Castle ProductionsDistributed byColumbia PicturesRelease date January 8, 1964 (1964-01-08)[1] Running time93 minutesCountryUnited States...
Coppa WSE 2018-2029 Competizione Coppa WSE Sport hockey su pista Edizione 39ª Organizzatore WSE Date dal 20 ottobre 2018al 28 aprile 2019 Partecipanti 28 Formula Eliminazione diretta Sede finale Lleida Risultati Vincitore Lleida(2º titolo) Finalista Sarzana Semi-finalisti Valdagno Voltregà Statistiche Incontri disputati 47 Gol segnati 403 (8,57 per incontro) Cronologia della competizione 2017-2018 2019-2020 Manuale La Coppa WSE 2018-2019 è stata la 39�...
1992 English local election 1992 Chester City Council election ← 1991 7 May 1992 (1992-05-07) 1994 → 20 out of 60 seats to Chester City Council31 seats needed for a majority First party Second party Party Conservative Labour Last election 24 seats, 36.9% 21 seats, 34.6% Seats won 9 5 Seats after 23 19 Seat change 1 2 Popular vote 13,223 10,126 Percentage 41.0% 31.4% Swing 4.1% 3.2% Third party Fourth party ...
Mayagüez 2010 XXI Juegos Centroamericanos y del CaribeLocalización Mayagüez Puerto RicoParticipantes • Países • Deportistas 31 países5204 aproxEventos 42 deportesCeremoniasApertura 18 de julio de 2010Clausura 1 de agosto de 2010Inaugurado por Luis FortuñoLlama olímpica Carlos Berrocal, Jorge García, Emily Viqueira, Ángel Víctor Pagán, Jaime Frontera, Wilfredo Maisonave y Ralph RodríguezEstadio olímpico Estadio Centroamericano de MayagüezCronolog...
English gothic rock band This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Mission band – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to remove this message) The MissionThe Mission performing in 2017Background informationOriginLeeds, EnglandGenresGothic rockpost-punkhar...
Town and civil parish in Northumberland, England For other uses, see Alnwick (disambiguation). Human settlement in EnglandAlnwickThe town of Alnwick, nestling behindAlnwick Castle (August 2004)AlnwickLocation within NorthumberlandPopulation8,116 (2011 census)[1]OS grid referenceNU186129Civil parishAlnwick[2]Unitary authorityNorthumberlandCeremonial countyNorthumberlandRegionNorth EastCountryEnglandSovereign stateUnited KingdomPost townALNWICKPostc...
This list of castles in Hungary article consists mostly of the well-known castles on the territory of today's Hungary. List of castles List of castles in Hungary Settlement Castle Picture County District Budapest Buda Castle Budapest District I Budapest Citadella Budapest District I Budapest Medieval city walls of Pest Budapest District I Budapest Vajdahunyad Castle Budapest District VI Abaújvár Abaúj Castle Borsod-Abaúj-Zemplén County Gönc District Babócsa Babócsa Castle Somogy Coun...
Copa FIFA ConfederacionesDatos generalesSede Por elección(territorios asociados FIFA)Inauguración 15 de octubre de 1992N.º de ediciones 10 (1992-2017)Organizador Federación Internacional de Fútbol Asociación (FIFA)Datos estadísticosParticipantes 8 (campeones confederativos, campeón mundial y anfitrión)Partidos 16Más títulos Brasil (4)Último campeón Alemania (1)Máx. goleador Cuauhtémoc Blanco (9) Ronaldinho (9) Cronología Copa Rey Fahd (1992-1995) Copa Confederaciones – Sitio...
River in Montana, United StatesRed Rock RiverUpper Red Rock Lake near headwaters of Red Rock RiverLocation of mouthLocationCountryUnited StatesStateMontanaCountyBeaverheadPhysical characteristicsMouth • coordinates44°56′33″N 112°50′43″W / 44.94250°N 112.84528°W / 44.94250; -112.84528 (Red Rock River)[1] • elevation5,545 feet (1,690 m)[1]Length70 miles (110 km)Basin size1,548 square...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. Addis Black Widow adalah grup musik asal Swedia. Lagu mereka meliputi Innocent, Wait in Summer, dan Goes Around Comes Around, yang mencapai peringkat 12 pada Swedish Tracks Chart tahun 2001.[1] Pada tahun 2007, grup ini memasuki semifinal pertama...
تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوق بها. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. (ديسمبر 2017) إن حيادية وصحة هذه المقالة محلُّ خلافٍ. ناقش هذه المسألة في صفحة نقا�...