Das Massenwirkungsgesetz (Abkürzung „MWG“) definiert das chemische Gleichgewicht für chemische Reaktionen. Dem Massenwirkungsgesetz zufolge ist das Produkt aus den Aktivitäten der beteiligten Stoffe (potenziert mit den jeweiligen stöchiometrischen Zahlen) konstant.[1] Die Konstante wird als Gleichgewichts- oder Massenwirkungskonstante bezeichnet.[2] Sind an einer Reaktion Stoffe beteiligt, erhält man:
Hierbei ist das Produktzeichen. Da die stöchiometrischen Zahlen der Ausgangsstoffe negativ sind, werden Massenwirkungsgesetze als Brüche formuliert, wobei die Produktterme den Zähler und die Eduktterme den Nenner bilden. Für eine Reaktion mit der unter Verwendung des Gleichgewichtspfeils formulierten stöchiometrischen Reaktionsgleichung
,
an der die Ausgangsstoffe A, B, …, M und die Produkte N, O, …, Z beteiligt sind, nimmt das Massenwirkungsgesetz daher folgende Form an:
Das Massenwirkungsgesetz wurde von den norwegischen Chemikern Cato Maximilian Guldberg und Peter Waage experimentell ermittelt und 1864 in Norwegisch sowie 1867 in Französisch (mit ihren experimentellen Daten und einem modifizierten Gesetz) erstmals veröffentlicht.[3] Ihre Veröffentlichung fand lange keine große Beachtung. Der Ire John Hewitt Jellett kam 1873 zu ähnlichen Schlussfolgerungen,[4] ebenso wie 1877 Jacobus Henricus van ’t Hoff. Insbesondere nach den Veröffentlichungen von van ’t Hoff (aber auch von anderen wie August Friedrich Horstmann) hatten Guldberg und Waage den Eindruck, dass ihre Arbeit nicht genug bekannt sei.[5] Nachdem sie 1879 im Journal für Praktische Chemie eine ausführlichere Darlegung in deutscher Sprache veröffentlicht hatten, erkannte van ’t Hoff deren Priorität an.
Thermodynamische Aspekte
Thermodynamische Definition der Gleichgewichtskonstante
Im thermodynamischen Gleichgewicht ist die Änderung des (zur Beschreibung des Systems angebrachten) thermodynamischen Potentials null (vergleiche Reaktionsquotient). Die Gleichgewichtskonstante hängt dann lediglich von den gewählten (willkürlichen, aber festen) Referenzzuständen (o) der beteiligten Stoffe ab. Der Referenzzustand (o) kann entsprechend dem betrachteten Reaktionsszenario frei gewählt werden und ist nicht mit sogenannten Standardzuständen unter Standardbedingungen zu verwechseln.[6][7] Die Lage des Gleichgewichtes sowie der Wert der Gleichgewichtskonstante hängen dabei vom gewählten Referenzzustand ab.
Da thermodynamische Gleichgewichtszustände unabhängig vom Weg sind, auf dem diese erreicht werden, ist es für die thermodynamische Gültigkeit des Massenwirkungsgesetzes nicht erforderlich, die unabhängigen Zustandsvariablen des relevanten thermodynamischen Potentials während des gesamten Reaktionsverlaufes konstant zu halten.
In der Praxis sind vor allem zwei Szenarien von Bedeutung:
Reaktionen, die in Autoklaven durchgeführt werden, wie etwa Solvothermalsynthesen, finden bei konstantem Volumen und in der Regel bei konstanter Temperatur statt, wohingegen der Druck variabel ist. Wird eine Reaktion bei konstanter Temperatur, konstantem Volumen und variablem Druck durchgeführt, ist die freie Energie (Helmholtz-Potential)F das relevante thermodynamische Potential, da neben der sich im Verlauf der chemischen Reaktion verändernden stofflichen Zusammensetzung des reagierenden Systems Temperatur und Volumen die unabhängigen Zustandsvariablen der freien Energie sind. Das Massenwirkungsgesetz definiert dann die stoffliche Zusammensetzung des reagierenden Systems, für die die freie Energie minimal wird und die damit den thermodynamischen Gleichgewichtszustand darstellt. Für eine chemische Reaktion, die in einem durch ein konstantes Volumen und eine konstante Temperatur gekennzeichneten Referenzzustand (o) durchgeführt wird und deren beteiligte Komponenten in diesem Referenzzustand die molaren freien Bildungsenergien besitzen, wird die molare freie Reaktionsenergie gleich:
Die Gleichgewichtskonstante ist dann unter Verwendung der absoluten Temperatur wie folgt durch die molare freie Reaktionsenergie des Referenzzustandes definiert:
Viele chemische Reaktionen werden in offenen Systemen durchgeführt, so dass Druckausgleich zwischen dem reagierenden System und der Umgebung erfolgen kann. Somit kann angenommen werden, dass die betrachtete Reaktion unter einem konstanten, dem Umgebungsdruck entsprechenden Druck durchgeführt wird, während das Volumen des reagierenden Systems variabel ist. Wird eine Reaktion bei konstantem Druck, konstanter Temperatur und variablem Volumen durchgeführt, ist die freie Enthalpie (Gibbs-Energie) das relevante thermodynamische Potential, da neben der sich im Verlauf der chemischen Reaktion verändernden stofflichen Zusammensetzung des reagierenden Systems Druck und Temperatur die unabhängigen Zustandsvariablen der freien Enthalpie sind. In diesem Fall definiert das Massenwirkungsgesetz die stoffliche Zusammensetzung des reagierenden Systems, für die die freie Enthalpie minimal wird und die damit den thermodynamischen Gleichgewichtszustand darstellt. Für eine chemische Reaktion, die in einem durch einen konstanten Druck und eine konstante Temperatur gekennzeichneten Referenzzustand (o) durchgeführt wird und deren beteiligte Komponenten in diesem Referenzzustand die molaren freien Bildungsenthalpien besitzen, wird die molare freie Reaktionsenthalpie gleich:
Die Gleichgewichtskonstante ist dann wie folgt durch die molare freie Reaktionsenthalpie der Referenzzustände definiert:
Wird ein chemisches Gleichgewicht durch die Änderung der Konzentration eines an der betrachteten Reaktion beteiligten Stoffes – und damit seiner Aktivität – gestört, müssen sich gemäß dem Prinzip vom kleinsten Zwang nach Henry Le Chatelier die Aktivitäten (und damit die Konzentrationen) der anderen an der Reaktion beteiligten Stoffe so ändern, dass das Massenwirkungsgesetz erfüllt bleibt. Die Gleichgewichtskonstante ist somit unabhängig von den Ausgangskonzentrationen der an der betrachteten Reaktion beteiligten Stoffe. Als thermodynamische Zustandsgröße hängt die Gleichgewichtskonstante nicht vom Reaktionsmechanismus oder von kinetischen Größen wie Geschwindigkeitskonstanten und Reaktionsgeschwindigkeiten ab.
Herleitung
Im Folgenden[8] wird exemplarisch angenommen, dass die betrachtete Reaktion bei einem durch einen konstanten Druck sowie eine konstante Temperatur gekennzeichneten Referenzzustand () durchgeführt wird, so dass die freie Enthalpie das relevante thermodynamische Potential ist. Sinngemäß lässt sich die unten skizzierte Herleitung auf jedes andere thermodynamische Potential anwenden.
sei der Beitrag eines Stoffes zur extensiven freien Gesamtenthalpie des betrachteten Systems. Sofern Druck, Temperatur und die Stoffmengen aller weiteren anwesenden Stoffe konstant gehalten werden, ist das chemische Potential des Stoffes gleich der Änderung pro Änderung der Stoffmenge des Stoffes :
Die Menge der Formelumsätze einer chemischen Reaktion in Mol ist durch die Umsatzvariable gegeben, dem Quotienten aus und der stöchiometrischen Zahl des Stoffes :
Ersetzt man im Ausdruck für das chemische Potential durch und löst nach auf, erhält man:
Enthält ein Reaktionsgemisch insgesamt verschiedene Stoffe, gilt für die Änderung der freien Gesamtenthalpie des reagierenden Systems:
Dividieren durch ergibt:
Unter den gegebenen Reaktionsbedingungen für ist die Änderung der freien Systementhalpie pro Reaktionsumsatz.
Das chemische Potential eines Stoffes in einer Reaktionsmischung kann bezogen auf das chemische Potential des reinen Stoffes für den Referenzzustand () (siehe Mischphase#Referenzzustände in der Mischphasenthermodynamik) ausgedrückt werden, der für das betrachtete Reaktionsszenario maßgeblich ist:[9][10]
Die Summe ist gleich der molaren freien Reaktionsenthalpie für den Referenzzustand. Man erhält:
Während konstant ist, solange Druck und Temperatur nicht verändert werden, hängt die Summe von den jeweils aktuellen relativen Aktivitäten ab. Durch Anwendung der einschlägigen Logarithmusregel lässt sich die Summe in den Logarithmus des Produkts umwandeln, welches als Reaktionsquotient bezeichnet wird:
Somit ergibt sich:
Solange im Verlauf der betrachteten Reaktion die transienten relativen Aktivitäten der Edukte größer als die relativen Gleichgewichtsaktivitäten der Edukte sind, ist kleiner als die Gleichgewichtskonstante , und es gilt:
Folglich nimmt mit Fortlaufen der Reaktion ab:
Im chemischen Gleichgewicht nimmt die freie Gesamtenthalpie des reagierenden Systems den kleinstmöglichen erreichbaren Wert an. Im chemischen Gleichgewicht weist die Funktion somit ein Minimum auf. Der partielle Differentialquotient muss demnach im chemischen Gleichgewicht gleich null sein:
Der Reaktionsquotient ist im chemischen Gleichgewicht allein durch die freie Reaktionsenthalpie im Referenzzustand gegeben und entspricht damit der Gleichgewichtskonstanten :
Dieser Ausdruck stellt den Zusammenhang zwischen der molaren freien Reaktionsenthalpie und der stofflichen Zusammensetzung des Reaktionsgemisches im chemischen Gleichgewicht dar. Auflösen nach ergibt entsprechend:
Da von abhängt, hängt auch der Zahlenwert der Gleichgewichtskonstante vom jeweils angewendeten Referenzzustand () ab.
Druck- und Temperaturabhängigkeit der Gleichgewichtskonstante
Da sich das Massenwirkungsgesetz auf ein unter den jeweiligen Reaktionsbedingungen anzuwendendes thermodynamisches Potential bezieht, ist die Gleichgewichtskonstante abhängig von den Zustandsgrößen, die die unabhängigen Zustandsvariablen des betreffenden thermodynamischen Potentials darstellen. Ist das relevante thermodynamische Potential die freie Enthalpie, ändert sich der Wert der Gleichgewichtskonstante, wenn die betrachtete Reaktion bei unverändertem Druck und einer veränderten konstanten Temperatur durchgeführt wird. Die Temperaturabhängigkeit der Gleichgewichtskonstante bei konstantem Druck lässt sich durch die van-’t-Hoff-Gleichung beschreiben beziehungsweise durch van-'t-Hoffsche Reaktionsisobaren darstellen. Ebenso ändert sich der Wert der Gleichgewichtskonstanten, wenn die betrachtete Reaktion bei unveränderter Temperatur und verändertem konstanten Druck durchgeführt wird. Zur Beschreibung der Druckabhängigkeit der Gleichgewichtskonstante bei konstanter Temperatur in kondensierten Phasen wird das molare Reaktionsvolumen herangezogen:[11][12]
Die Druckabhängigkeit der Gleichgewichtskonstante ist bei Reaktionen, die in kondensierten Phasen stattfinden, jedoch typischerweise sehr schwach und wird häufig vernachlässigt.[13] Ist das relevante thermodynamische Potential die freie Energie, wird die Temperaturabhängigkeit der Gleichgewichtskonstante bei konstantem Volumen durch die van-’t-Hoff’sche Reaktionsisochore beschrieben.[14]
Gemäß der Theorie des Übergangszustandes müssen im Verlauf elementarer Reaktionsereignisse Ausgangsstoffe und Produkte trennende Potentialbarrieren überwunden werden, die sich auf der makroskopischen Ebene am zweckmäßigsten durch das jeweils anzuwendende thermodynamische Potential beschreiben lassen. Reversible Reaktionen zeichnen sich dadurch aus, dass neben Hinreaktionen, die zur Bildung der Reaktionsprodukte aus den Ausgangsstoffen führen, auch Rückreaktionen, die zur Bildung der Ausgangsstoffe aus den Reaktionsprodukten führen, in nennenswertem Umfang stattfinden. Werden beispielsweise Druck und Temperatur konstant gehalten, repräsentiert die molare freie Aktivierungsenthalpie die Höhe der bei der Hinreaktion für die Umwandlung der Ausgangsstoffe in die Produkte zu überwindenden Potentialbarriere (bezogen auf den Referenzzustand). Entsprechend repräsentiert die molare freie Aktivierungsenthalpie die Höhe der bei der Rückreaktion für die Umwandlung der Produkte in die Ausgangsstoffe zu überwindenden Potentialbarriere.
Im Gleichgewicht laufen Hin- und Rückreaktion entlang derselben Reaktionstrajektorie in entgegengesetzter Richtung ab. Es gilt mit als molarer freier Reaktionsenthalpie der Hinreaktion für (siehe Kinetik (Chemie), Abschnitt Freie Aktivierungsenthalpien und thermodynamisches Gleichgewicht):
Die Kinetik einer betrachteten Reaktion wird durch ein Geschwindigkeitsgesetz beschrieben, in das das thermodynamische Aktivierungspotential mittels einer Geschwindigkeitskonststante eingeht. Die Geschwindigkeitskonstante der Hinreaktion , die die Kinetik der Umwandlung der Ausgangsstoffe in die Produkte repräsentiert, hängt von wie folgt ab (siehe Abschnitt "Thermodynamische Formulierung" im Artikel "Theorie des Übergangszustandes"):
Entsprechend gilt für die Geschwindigkeitskonstante , die die Kinetik der Umwandlung der Produkte die Ausgangsstoffe durch die Rückreaktion repräsentiert:
Durch Anwendung des Ausdrucks lässt sich als Funktion von und darstellen:
Für den Quotienten aus und folgt:
Das Verhältnis ist somit gleich der Gleichgewichtskonstante und wird durch die Referenz freie Reaktionsenthalpie vorgegeben. Der Zusammenhang zwischen der Gleichgewichtskonstante und den Geschwindigkeitskonstanten der Hin- und Rückreaktion ist thermodynamisch begründet und gilt unabhängig von der Art und Weise, in der die die Reaktionskinetik beschreibenden Geschwindigkeitsgesetze formuliert werden.
Entsprechen für eine reversible Reaktion
lassen sich mit sowie als Reaktionsgeschwindigkeiten der Hin- und Rückreaktion folgende Geschwindigkeitsgesetze formulieren (siehe auch Ratengleichung):[15]
Teilt man den Ausdruck für durch den Ausdruck für , erhält man:
Mit sowie erhält man:
Daraus folgt, dass im chemischen Gleichgewicht die Geschwindigkeit der Hinreaktion gleich der Geschwindigkeit der Rückreaktion sein muss:
Aufstellung des Massenwirkungsgesetzes mit Stoffmengenkonzentrationen
Die relativen Aktivitäten sind relativ zum Referenzzustand (mit Referenzkonzentration ), wobei der Aktivitätskoeffizient für wechselwirkende Systeme ungleich eins ist. Durch Einsetzen der relativen Aktivitäten erhält man
Unter Vernachlässigung der Teilchenwechselwirkungen – d. h. durch Fordern, dass die Aktivitätskoeffizienten – erhält man
was für verdünnte Lösungen häufig eine gute Näherung ist. Teilweise werden die Referenzkonzentrationen zusätzlich in die Definition einer neuen Gleichgewichtskonstante einbezogen:
Statt thermodynamisch korrekt mit den Aktivitäten der an der betrachteten Reaktion beteiligten Stoffe kann somit das Massenwirkungsgesetz für Reaktionen in verdünnter Lösung häufig näherungsweise unter Verwendung der Stoffmengenkonzentrationen der beteiligten Stoffe aufgestellt werden. Bei stärker konzentrierten Lösungen können jedoch die Werte der Aktivitätskoeffizienten stark von 1 abweichen, so dass diese Näherung mit Vorsicht zu gebrauchen ist. Die mit Stoffmengenkonzentrationen berechneten Gleichgewichtskonstanten werden zur Unterscheidung von mit Aktivitäten berechneten Gleichgewichtskonstanten mit Kc bezeichnet, wobei der tiefgestellte Index c für Stoffmengenkonzentration steht. Das Massenwirkungsgesetz wird zum Beispiel für die Reaktion
unter Verwendung der Stoffmengenkonzentrationen c(A), c(B), c(C) und c(D) der Ausgangsstoffe A und B sowie der Produkte C und D wie folgt formuliert:
Da die stöchiometrischen Zahlen und der Ausgangsstoffe A und B als Exponenten von deren Stoffmengenkonzentrationen c(A) und c(B) definitionsgemäß ein negatives Vorzeichen besitzen, stehen die Produktterme und im Nenner des Ausdrucks für .
Eine mittels der Stoffmengenkonzentrationen erhaltene Gleichgewichtskonstante hat in der Regel einen anderen Zahlenwert als die entsprechende mittels der Aktivitäten erhaltene Gleichgewichtskonstante. Weiterhin kann eine Dimension und damit auch eine Einheit besitzen. sei die Summe aller stöchiometrischer Zahlen der beteiligten Stoffe einer Reaktion mit beteiligten Stoffen:
ist das Dimensionssymbol für Länge, das Dimensionssymbol für die Stoffmenge. Die Dimension der Stoffmengenkonzentration ist und die Dimension von demzufolge . Lediglich wenn ist, ist dimensionslos. Betrachtet man beispielsweise die Synthese von Kaliumhexacyanidoferrat(II) gemäß
,
ergibt sich für :
In diesem Beispiel ist und die Dimension von gleich . Die Einheit von ist demnach .
Um eine dimensionslose Form der stoffmengenkonzentrationsbasierten Gleichgewichtskonstante zu erhalten, kann durch die Einheitskonzentration potenziert mit dividiert werden.
Aufstellung des Massenwirkungsgesetzes für homogene Gasgleichgewichte
Für Gasphasenreaktionen wird das Massenwirkungsgesetz häufig mit den Partialdrücken der beteiligten Stoffe aufgestellt. Als Symbol für mit Partialdrücken erhaltene Gleichgewichtskonstanten wird verwendet. Bei homogenen Gasgleichgewichten mit beteiligten Komponenten nimmt das Massenwirkungsgesetz entsprechend folgende Form an:
ein. und beziehungsweise die Partialdrücke und die Stoffmengenkonzentrationen lassen sich über die Zustandsgleichung für ideale Gase miteinander verknüpfen:
Für die Gleichgewichtskonstante bei der Bildung von Iodwasserstoff ergibt sich:
Ist in einem Gasphasengleichgewicht die Teilchenanzahl der Produkte gleich der Teilchenanzahl der Edukte, so kürzt sich im mit Stoffmengenkonzentrationen formulierten Massenwirkungsgesetz heraus. Betrachtet man jedoch die Reaktion von Schwefeldioxid und Sauerstoff zu Schwefeltrioxid
mit
und ersetzt die Drücke durch Stoffmengenkonzentrationen, ergibt sich:
Die Teilchenzahl vermindert sich bei der Reaktion und ein Faktor verbleibt im mit Stoffmengenkonzentrationen formulierten Massenwirkungsgesetz.
Allgemein lässt sich also das Massenwirkungsgesetz eines Gasphasengleichgewichts ausdrücken als:[16][17]
Dabei ist die Summe der stöchiometrische Zahlen der betrachteten Reaktion. Im Fall der Bildung von HI aus den Elementen ist . Beim Haber-Bosch-Verfahren ist .
Alternativ ist es oft zweckmäßig, die Zusammensetzung der Gasphase über Molenbrüche (Stoffmengenanteile) anzugeben. In diesem Fall wird eine auf die Stoffmengenanteile bezogene Gleichgewichtskonstante erhalten:
Für eine Vielzahl von Spezialfällen definiert das Massenwirkungsgesetzes – teilweise in vereinfachter Form – Gleichgewichtskonstanten für spezifische Reaktionsszenarien. So beschreiben Assoziations- und Dissoziationskonstanten das Gleichgewicht für Assoziations- und Dissoziationsprozesse. Das Löslichkeitsprodukt definiert die Gleichgewichtslöslichkeit von Salzen in Wasser. Komplexbildungskonstanten quantifizieren die Stabilität von Komplexverbindungen. Ionenprodukte werden durch Vereinfachung des Massenwirkungsgesetzes für elektrolytische Dissoziationsprozesse erhalten. Die quantitative thermodynamische Beschreibung der Säure-Base-Chemie durch Säurekonstanten und Basenkonstanten basiert auf dem Massenwirkungsgesetz. Die Protolyse von Essigsäure in wässeriger Lösung wird beispielsweise durch folgende stöchiometrische Reaktionsgleichung beschrieben:
Die Säurekonstante von Essigsäure ergibt sich gemäß:
Kenneth Denbigh: The Principles of Chemical Equilibrium: With Applications in Chemistry and Chemical Engineering. 4. Auflage, Cambridge University Press, Cambridge 1981, ISBN 0-521-28150-4, doi:10.1017/CBO9781139167604.
Andreas Heintz: Thermodynamik der Mischungen – Mischphasen, Grenzflächen, Reaktionen, Elektrochemie, äußere Kraftfelder. Springer-Verlag, Berlin/Heidelberg 2017, ISBN 978-3-662-49923-8, doi:10.1007/978-3-662-49924-5.
Ostwalds Klassiker der exakten Wissenschaften Nr. 139. Thermodynamische Abhandlungen über Molekulartheorie und chemische Gleichgewichte. Drei Abhandlungen aus den Jahren 1867, 1868, 1870 und 1872 von C. M. Guldberg. Aus dem Norwegischen übersetzt und herausgegeben von R. Abegg. Leipzig: Wilh. Engelmann, 1903.
P. Waage, C. M. Gulberg, Studies Concerning Affinity, englische Übersetzung ihrer Veröffentlichung von 1864. pdf
Einzelnachweise
↑Karl-Heinz Lautenschläger, Werner Schröter, Joachim Teschner, Hildegard Bibrack, Taschenbuch der Chemie, 18. Auflage, Harri Deutsch, Frankfurt (Main), 2001, S. 257.
↑equilibrium constant. IUPAC, 7. Oktober 2008, abgerufen am 29. September 2018 (englisch).
↑Seine Arbeiten wurden von Walther Nernst bei Ostwalds Klassikern 1908 in deutscher Übersetzung veröffentlicht.
↑E. W. Lund, Guldberg and Waage and the law of mass action, Journal of Chemical Education, Band 42, 1965, S. 548
↑Gerd Wedler, Hans-Joachim Freund: Lehr- und Arbeitsbuch Physikalische Chemie. 7. Auflage. Wiley-VCH, Weinheim 2018, ISBN 978-3-527-34611-0, 2.6.2 Standardreaktion, Restreaktion und Gleichgewichtskonstante, S.225.
↑Georg Job, Regina Rüffler: Physikalische Chemie: Eine Einführung nach neuem Konzept mit zahlreichen Experimenten (= Studienbücher Chemie). 2. Auflage. Springer Fachmedien Wiesbaden, Wiesbaden 2021, ISBN 978-3-658-32935-8, 5.2 Temperaturabhängigkeit von chemischem Potenzial und Antrieb, S.120, doi:10.1007/978-3-658-32936-5.
↑K. G. Denbigh: The Principles of Chemical Equilibrium: With Applications in Chemistry and Chemical Engineering. 4. Auflage. Cambridge University Press, Cambridge 1981, ISBN 978-0-521-23682-9, 9.1. Conventions for the activity coefficient on the mole fraction scale, S.270f., doi:10.1017/cbo9781139167604.
↑Gerd Wedler, Hans-Joachim Freund: Lehr- und Arbeitsbuch Physikalische Chemie. 7. Auflage. Wiley-VCH, Weinheim 2018, ISBN 978-3-527-34611-0, 2.5.5 Aktivität und Aktivitätskoeffizient, S.198ff.
↑R. Van Eldik, T. Asano, W. J. Le Noble: Activation and reaction volumes in solution. 2. In: Chem. Rev. Band89, Nr.3, 1989, S.549–688, doi:10.1021/cr00093a005.
↑Andreas Heintz: Thermodynamik der Mischungen – Mischphasen, Grenzflächen, Reaktionen, Elektrochemie, äußere Kraftfelder. Springer-Verlag, Berlin/Heidelberg 2017, ISBN 978-3-662-49923-8, Kapitel „2.5 Temperatur- und Druckabhängigkeit chemischer Gleichgewichtskonstanten in kondensierten Phasen“, S.215, doi:10.1007/978-3-662-49924-5.
↑Kenneth Denbigh: Principles of Chemical Equilibrium. 1. Auflage. Cambridge University Press, 1955.
↑Charles E. Mortimer, Ulrich Müller, Johannes Beck: Chemie: Das Basiswissen der Chemie, Thieme, Stuttgart, 2014, S. 273. Eingeschränkte Vorschau in der Google-Buchsuche
↑ abGerd Wedler: Lehrbuch der Physikalischen Chemie, VCH, Weinheim, 3. Auflage, 1987, S. 346f.
Bintang Takhta Italia Ordo Takhta Italia, Italia: Ordine della Corona d'Italiacode: it is deprecated , dibuat sebagai ordo nasional pada 1868 oleh Raja Vittorio Emanuele II, untuk memperingati penyatuan Italia pada 1861. Penghargaan tersebut diberikan dalam lima peringkat untuk jasa sipil dan militer. Referensi Wikimedia Commons memiliki media mengenai Order of the Crown of Italy. Ordini Cavallereschi del Regno d'ItaliaDiarsipkan 2006-05-07 di Wayback Machine. Corpo della Nobiltà Italiana
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Hidang...
Pour les articles homonymes, voir Côme (homonymie). Côme Como Armoiries Drapeau Vue d'ensemble de la ville. Administration Pays Italie Région Lombardie Province Côme Maire Mandat Alessandro Rapinese 2022- Code postal 22100 Code ISTAT 013075 Code cadastral C933 Préfixe tel. 031 Démographie Gentilé Comaschi (en français, Comasques) Population 83 184 hab. (1er janvier 2023[1]) Densité 2 241 hab./km2 Géographie Coordonnées 45° 49′ 00″...
العلاقات الجنوب سودانية السنغافورية جنوب السودان سنغافورة جنوب السودان سنغافورة تعديل مصدري - تعديل العلاقات الجنوب سودانية السنغافورية هي العلاقات الثنائية التي تجمع بين جنوب السودان وسنغافورة.[1][2][3][4][5] مقارنة بين البلدين هذه مقا�...
Cal State L.A.Cal State LA westbound busway platformGeneral informationLocation5150 State University DriveLos Angeles, CaliforniaCoordinates34°03′45″N 118°10′13″W / 34.0625°N 118.1702°W / 34.0625; -118.1702Owned byCaltrans and California State University, Los Angeles ConsortiumOperated byLos Angeles County Metropolitan Transportation AuthorityLine(s)SCRRA San Gabriel Subdivision[1]Platforms2 side platforms (Busway)1 side platform (Metrolink)Tracks1C...
Basilika Santo Wilibrordus di Biara Echternach, Echternach Ini adalah daftar basilika di Luksemburg. Katolik Daftar basilika Gereja Katolik di Luksemburg[1]: Basilika Santo Wilibrordus di Biara Echternach, Echternach Lihat juga Gereja Katolik Roma Gereja Katolik di Luksemburg Daftar katedral di Luksemburg Daftar basilika Biara Echternach Referensi ^ Basilika di seluruh dunia lbsDaftar basilika di EropaNegaraberdaulat Albania Andorra Armenia1 Austria Azerbaijan1 Belanda Belarus Belgia ...
Cet article est une ébauche concernant une chronologie ou une date et le Canada. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Cet article concerne un événement en cours. Ces informations peuvent manquer de recul, changer à mesure que l’événement progresse ou ne pas prendre en compte des développements récents. Le titre lui-même peut être provisoire. N’hésitez pas à l’améliorer en veillant �...
Untuk kampus bernama sama, lihat Universitas Tamansiswa Palembang. Universitas TamansiswaJenisPerguruan Tinggi SwastaDidirikan1987RektorKi. Dr (Cand).Sepris Yonaldi, S.E., M.M.LokasiKota PadangSitus webhttp://www.unitas-pdg.ac.id Universitas Tamansiswa (Unitas), adalah perguruan tinggi swasta di Kota Padang, Indonesia, berdiri pada tahun 1987 yang berpusat di Yogyakarta di bawah naungan Majelis Luhur Persatuan Tamansiswa. Alamat: Jl. Tamansiswa No.9 Padang 25138. Telp/Fax: 0751-40020, 0751-44...
1979 war film This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Breakthrough 1979 film – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this message) BreakthroughDirected byAndrew V. McLaglenWritten byPeter Berneis / Tony WilliamsonProduced byWolf C. HartwigHerbert L...
Sultans of the Mamluk SultanateThe Cairo Citadel, the seat of power of the Mamluk sultans DetailsLast monarchTuman bay IIFormation1250Abolition1517ResidenceCairo The following is a list of Mamluk sultans. The Mamluk Sultanate was founded in 1250 by mamluks of the Ayyubid sultan as-Salih Ayyub and it succeeded the Ayyubid state. It was based in Cairo and for much of its history, the territory of the sultanate spanned Egypt, Syria and parts of Anatolia, Upper Mesopotamia and the Hejaz. Th...
Sexuality of children 1905 illustration subtitled put your hand where it shouldn't be (in French) Sexual behaviors in children are common and may range from normal and developmentally appropriate to abusive.[1] These behaviors may include self-stimulation, interest in sex, curiosity towards sex and the opposite gender, exhibitionism (the display of one's body to another child or an adult), voyeurism (attempts at seeing the body of another child or an adult), gender role behaviors[...
Disambiguazione – Se stai cercando l'omonimo giornalista olandese, vedi Jan Roos (giornalista). Jan Roos conosciuto anche con il nome italianizzato Giovanni Rosa (Anversa, 1591 – Genova, 1638) è stato un pittore fiammingo, naturalizzato italiano. Indice 1 Biografia[1] 2 Opere[3] 3 Note 4 Bibliografia 5 Altri progetti Biografia[1] Originario di Anversa, Roos fu allievo di Jan de Wael e di Frans Snyders, dal quale apprese le tecniche pittoriche per la realizzazione delle nature mo...
Questa voce sull'argomento attori tedeschi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Jutta Kammann (Heidenheim an der Brenz, 24 marzo 1944) è un'attrice tedesca. Jutta Kammann (2021) Filmografia Gideon (1966) Die Liebenden von Florenz (1966) Goya (1969) Unser Willi ist der Beste (1971) Eine Tote soll ermordet werden (1972) Die Schöngrubers (due episodi, 1972) Ausbruch (1973) Drüben bei Lehmann...
Stasiun Inakita伊那北駅Stasiun Inakita pada Maret 2008Lokasi1930 Yamadera, Ina-shi, Nagano-ken 396-0023JepangKoordinat35°50′44″N 137°57′51″E / 35.8456°N 137.9642°E / 35.8456; 137.9642Ketinggian643 meter[1]Operator JR CentralJalur Jalur IidaLetak178.9 km dari ToyohashiJumlah peron1 peron samping + 1 peron pulauInformasi lainStatusTanpa stafSejarahDibuka4 Januari 1912PenumpangFY20151.112 per hari Lokasi pada petaStasiun InakitaLokasi di Nagano Pre...
Men's double sculls at the 2017 World Rowing ChampionshipsVenueNathan Benderson ParkLocationSarasota, United StatesDates25 September – 1 OctoberCompetitors40 from 20 nationsWinning time6:10.07Medalists John StoreyChris Harris New Zealand Mirosław ZiętarskiMateusz Biskup Poland Filippo MondelliLuca Rambaldi Italy← 20152018 → 2017 World Rowing ChampionshipsOpenweight eventsSingle scullsmenwom...
غوستاف فون راوخ (بالألمانية: Gustav von Rauch) معلومات شخصية اسم الولادة (بالألمانية: Johann Justus Georg Gustav von Rauch) الميلاد 1 أبريل 1774 [1] براونشفايغ الوفاة 2 أبريل 1841 (67 سنة) برلين مكان الدفن مقبرة انفالد مواطنة مملكة بروسيا الأولاد روزالي فون راوخغوستا�...
Indian politician This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Philip Wodehouse colonial administrator – news · newspapers · books · scholar · JSTOR (Februa...
Questa voce sull'argomento biologi statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. George Wald Premio Nobel per la medicina 1967 George Wald (New York, 18 novembre 1906 – Cambridge, 12 aprile 1997) è stato un biologo, fisiologo, biochimico, ricercatore e attivista statunitense, famoso per le sue ricerche sulle forme molecolari delle cellule fotorecettrici della retina. Tali ricerche diedero il via alla comprensione dei mutamenti mo...