wobei G die Größe des abzubildenden Gegenstandes (Objektes) und B die des Bildes ist. Die Gegenstandsweite oder Objektweite, also der Abstand zwischen Hauptebene der Linse und Objekt, ist hier mit g bezeichnet und die Bildweite, also der Abstand zwischen Hauptebene und Bild, mit b.
Diese Beziehung wird Linsengleichung oder Abbildungsgleichung genannt. Eine äquivalente Formulierung ist die newtonsche Abbildungsgleichung.
Die Linsengleichung ist auch für dicke Linsen und Systeme aus mehreren Linsen gültig, deren Hauptebenen im Allgemeinen nicht zusammenfallen. Dann bezeichnet g den Abstand zwischen Objekt und objektseitiger Hauptebene und b den Abstand zwischen Bild und bildseitiger Hauptebene.
Gleichungen für gewünschte Vergrößerung
Sucht man die Bild- und Gegenstandsweiten zu einer Vergrößerung (Verhältnis von Bild- und Gegenstandsgröße), so gilt
,
,
Um zum Beispiel eine vierfache Vergrößerung zu erhalten, hat man und .
Gleichungen bei unbekannter Bildweite
Folgende Gleichungen sind anwendbar, wenn die Bildweite b – zum Beispiel bei Kameras – nicht bekannt ist.
Um ein gewünschtes Blickfeld G über die Entfernung g auf die BildsensorgrößeB abzubilden, wird eine Brennweite
benötigt. Für eine gegebene Brennweite f wird auf die Sensorgröße B das Blickfeld G im Abstand g bestimmt mit
Brechkraft und Vergenz
Der Kehrwert der Brennweite ist die Brechkraft und gleich der Summe der Kehrwerte von Bild- und Gegenstandsweite, wie die Linsengleichung in folgender, oben hergeleiteter Form zeigt:
Kehrwerte besonderer Weiten/Längen werden in der geometrischen OptikVergenzen genannt. So wie die Brechkraft einer Einzellinse lässt sich auch die von dünnen benachbarten Linsen näherungsweise einfach als Summe von Vergenzen – den Brechkräften der Einzellinsen – ausdrücken:
Ebenso ist die Brechkraft beim Brillenträger näherungsweise die Summe der des Auges und der der Brille.
Literatur
Douglas C. Giancoli: Physik. Band 10, 3. Auflage, Pearson Education, München 2006, ISBN 978-3-8273-7157-7.