In der Mathematik ist der Begriff des Kobordismus (auch: Bordismus) vor allem in der Topologie und ihren Anwendungen sowie in der topologischen Quantenfeldtheorie von Bedeutung. Er gilt als die bis heute „berechenbarste“ Relation unter Mannigfaltigkeiten, die geometrisch interessant ist.[1]
Als Schöpfer der Kobordismentheorie gilt René Thom (1954)[2], wobei einige entscheidende Ideen schon von Lew Pontrjagin (1950 und davor) vorweggenommen wurden.
Ein Kobordismus zwischen zwei Mannigfaltigkeiten und ist eine Mannigfaltigkeit für deren Rand gilt
.
und werden dann als unorientiert kobordant bezeichnet.
Häufiger wird allerdings der orientierte Kobordismus verwendet. Zwei orientierte Mannigfaltigkeiten und heißen orientiert kobordant, wenn es eine orientierte Mannigfaltigkeit
mit
gibt, wobei die Orientierung auf die von der Orientierung von induzierte Orientierung auf dem Rand und die Mannigfaltigkeit mit der entgegengesetzten Orientierung bezeichnet.
Berechenbarkeit
Nach einem Satz von Thom sind zwei Mannigfaltigkeiten genau dann orientiert kobordant, wenn alle ihre Pontrjagin-Zahlen und Stiefel-Whitney-Zahlen übereinstimmen.
Verschiedene Varianten des Kobordismus-Begriffs sind von Bedeutung, insbesondere gerahmter Kobordismus (Pontrjagin-Thom-Konstruktion) und h-Kobordismus.
Literatur
John Milnor: A survey of cobordism theory. Enseignement Math. (2) 8 1962 16–23. online (PDF; 9,1 MB)