Josh Unice

Vereinigte StaatenVereinigte Staaten  Josh Unice

Geburtsdatum 24. Juni 1989
Geburtsort Toledo, Ohio, USA
Größe 180 cm
Gewicht 80 kg

Position Torwart
Fanghand Links

Draft

NHL Entry Draft 2007, 3. Runde, 86. Position
Chicago Blackhawks

Karrierestationen

2007–2009 Kitchener Rangers
2009–2010 Windsor Spitfires
2010–2014 University of Western Ontario
2014–2015 HC 05 Banská Bystrica
Sheffield Steelers
CBR Brave

Josh Unice (* 24. Juni 1989 in Toledo, Ohio) ist ein ehemaliger US-amerikanischer Eishockeytorwart.

Karriere

Unice wurde beim NHL Entry Draft 2007 in der dritten Runde an 86. Stelle von den Chicago Blackhawks ausgewählt. Ab der Saison 2007/08 spielte er bei den Kitchener Rangers in der Ontario Hockey League und brachte diese bis ins Finale des Memorial Cup 2008. Im Folgejahr gewann er mit den Spitfires den J. Ross Robertson Cup und Memorial Cup. In der Saison 2009/10 lief er sowohl für die Windsor Spitfires als auch für die University of Western Ontario aufs Eis, nachdem er dort sein Studium begonnen hatte. Für die Western Mustangs stand Unice bis 2014 zwischen den Pfosten.

Anschließend spielte er für den HC 05 Banská Bystrica, die Sheffield Steelers und CBR Brave, ehe er seine Karriere beendete.

International

Unice gewann 2006 mit der US-amerikanischen Auswahl die Silbermedaille bei der World U-17 Hockey Challenge, im Folgejahr nahm er als Mitglied seines Heimatlandes am Wettbewerb der U18-Junioren-Weltmeisterschaft teil und errang mit den USA erneut die Silbermedaille. Außerdem wurde der Unice als bester Torhüter des Turniers ausgezeichnet und ins All-Star der Weltmeisterschaft gewählt. Wiederum ein Jahr später nahm der Torwart mittlerweile mit der U-20-Nationalmannschaft der Vereinigten Staaten an der Weltmeisterschaft teil.

Erfolge und Auszeichnungen

International

Read other articles:

Josephine CrowellCrowell pada 1914Lahir(1859-01-11)11 Januari 1859Nova Scotia, Amerika Utara BritaniaMeninggal27 Juli 1932(1932-07-27) (umur 73)Amityville, New York, Amerika SerikatPekerjaanPemeranTahun aktif1912–1929Suami/istriEmile La Croix Josephine Boneparte Crowell (11 Januari 1859 – 27 Juli 1932) adalah seorang pemeran film Kanada pada era film bisu. Ia tampil dalam 94 film antara 1912 dan 1929. Sebagian filmografi The Mothering Heart (1913, Pendek) Home, Sw...

 

2nd-century Roman mathematician, astronomer, geographer For other uses, see Ptolemy (disambiguation). PtolemyΚλαύδιος ΠτολεμαῖοςPortrait of Ptolemy by Justus van Gent and Pedro Berruguete (1476)[a]Bornc. 100 AD[1]UnknownDiedc. 170 (aged 69–70) AD[1]Alexandria, Egypt, Roman EmpireCitizenshipRoman; ethnicity: Greco-EgyptianKnown forPtolemaic universePtolemy's world mapPtolemy's intense diatonic scalePtolemy's table of chordsPtolem...

 

Cet article est une ébauche concernant le Saint-Empire romain germanique et le Moyen Âge. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Étienne II. Étienne IIFonctionsDuc de Bavière1363Duc de Bavière1353-1375Duc de Bavière1349-1353Duc de Bavière1347-1349Titre de noblesseDucBiographieNaissance 1319MunichDécès 1375 ou 13 mai 1375LandshutSépulture Cathédrale Notr...

Airport serving Miami, Florida, U.S. Miami airport redirects here. For other uses, see Miami airport (disambiguation). Miami International AirportMiami International Airport in November 2012IATA: MIAICAO: KMIAFAA LID: MIAWMO: 72202SummaryAirport typePublicOwner/OperatorMiami-Dade Aviation Department (MDAD)ServesMiami metropolitan areaLocationMiami-Dade County, Florida, U.S.Opened1928; 96 years ago (1928)Hub forABX AirAmerican AirlinesAmerijet InternationalAtlas AirAvianca Ca...

 

Gérard HoullierOBE Gérard Houllier di Old Trafford pada 2008Informasi pribadiNama lengkap Gérard Paul Francis Houllier[1]Tanggal lahir (1947-09-03)3 September 1947[2]Tempat lahir Thérouanne, Prancis[2]Tanggal meninggal 14 Desember 2020(2020-12-14) (umur 73)Tempat meninggal Paris, PrancisPosisi bermain GelandangKarier junior1959–1968 HucqueliersKarier senior*Tahun Tim Tampil (Gol)1968–1969 Alsop 1969–1971 Hucqueliers 1971–1980 Le Touquet Kepelatihan197...

 

Nonprofit organization For the branch of ethics that examines human-animal relationships, see Animal ethics. Animal EthicsFormation2012; 12 years ago (2012)FoundersDaniel Dorado, Oscar Horta, Leah MckelvieTypeNonprofitRegistration no.EIN 46-1062870Legal status501(c)(3) organization[1]PurposePromotion of animal rights and antispeciesismLocationOakland, California, United StatesRegion GlobalOfficial language English, Spanish, Italian, Portuguese, German, French, P...

Disambiguazione – Se stai cercando altri significati, vedi Stadio Romeo Menti (disambigua). Stadio Romeo MentiVisione dello stadio dal settore Distinti Informazioni generaliStato Italia UbicazioneLargo Paolo Rossi, 9I-36100 Vicenza Inizio lavori1934 Inaugurazione1935 Ristrutturazione2014-2018 ProprietarioComune di Vicenza GestoreL.R. Vicenza ProgettoIng. Tullio Pedrina e Geom. Zanardo Informazioni tecnichePosti a sedere17.163 (13.173 omologati)[1] StrutturaPianta ottagonale Co...

 

В Википедии есть статьи о других людях с такой фамилией, см. Шоу; Шоу, Джордж. Бернард Шоуангл. Bernard Shaw 1909 год Имя при рождении George Bernard Shaw Дата рождения 26 июля 1856(1856-07-26)[1][2][…] Место рождения Дублин, Соединённое Королевство Великобритании и Ирландии Дата смерти 2 н�...

 

Questa voce o sezione sull'argomento stagioni delle società calcistiche italiane non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Calcio Bellaria Igea Marina. Bellaria Igea MarinaStagione 2006-2007Sport calcio Squadra Bellaria Igea Marina Allenatore Mirko Fabbri (fino al...

Cette page concerne l'année 1700 du calendrier grégorien. Pour l'année 1700 av. J.-C., voir 1700 av. J.-C. Pour le nombre 1700, voir 1700 (nombre). Chronologies Le monde en 1700.Données clés 1697 1698 1699  1700  1701 1702 1703Décennies :1670 1680 1690  1700  1710 1720 1730Siècles :XVe XVIe  XVIIe  XVIIIe XIXeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et...

 

习近平 习近平自2012年出任中共中央总书记成为最高领导人期间,因其废除国家主席任期限制、开启总书记第三任期、集权统治、公共政策与理念、知识水平和自述经历等争议,被中国大陸及其他地区的民众以其争议事件、个人特征及姓名谐音创作负面称呼,用以恶搞、讽刺或批评习近平。对习近平的相关负面称呼在互联网上已经形成了一种活跃、独特的辱包亚文化。 权力�...

 

Description of political thought's evolution through times For the journal, see History of Political Thought. History of political philosophy redirects here. For the textbook, see History of Political Philosophy. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Stat...

Defunct American telecommunications company Sprint CorporationFormer Sprint World Headquarters Campus in Overland Park, Kansas, U.S.Trade nameSprintFormerlyBrown Telephone Company (1899–1911)United Telephone Company (1911–1925)United Telephone and Electric (1925–1938)United Utilities, Inc. (1938–1972)United Telecommunications and United Telephone System (1972–1987)Sprint Corporation (1987–2005, 2013–2020)Sprint Nextel Corporation (2005–2013)Company typePublicTraded asNYSE:...

 

Egyptian Expeditionary ForceActive1916–19Country British Empire French Republic Kingdom of ItalyEngagementsFirst World War Senussi campaign Sinai and Palestine campaign CommandersNotablecommandersArchibald Murray (1916–1917)Edmund Allenby (1917–1919)Military unit The Egyptian Expeditionary Force (EEF) was a British Empire military formation, formed on 10 March 1916 under the command of General Archibald Murray from the Mediterranean Expeditionary Force and the Force in Eg...

 

Mathematical paradox The nine intersections of x 3 − x = 10 ( y 3 − y ) {\displaystyle x^{3}-x=10(y^{3}-y)} and y 3 − y = 10 ( x 3 − x ) {\displaystyle y^{3}-y=10(x^{3}-x)} In mathematics, Cramer's paradox or the Cramer–Euler paradox[1] is the statement that the number of points of intersection of two higher-order curves in the plane can be greater than the number of arbitrary points that are usually needed to define one such curve. It is named after the ...

Early pioneer of antiseptic procedures Semmelweis redirects here. For the films, see Semmelweis (1940 film) and Semmelweis (1952 film). The native form of this personal name is Semmelweis Ignác Fülöp. This article uses Western name order when mentioning individuals. Ignaz SemmelweisSemmelweis, aged 42 in 1860, photograph by Borsos and DoctorBornSemmelweis Ignác Fülöp(1818-07-01)1 July 1818Buda, Hungary, Austrian Empire(now Budapest, Hungary)Died13 August 1865(1865-08-13) (aged ...

 

Classic American deli sandwich Pastrami on ryeA pastrami sandwich from Katz's DelicatessenTypeSandwichPlace of originUnited StatesRegion or stateNew York City, New YorkMain ingredientspastrami, rye bread, spicy brown mustard  Media: Pastrami on rye Pastrami on rye is a sandwich comprising sliced pastrami on rye bread, often served with mustard and Kosher dill pickles. It was popularized in the Jewish delicatessens of New York City and has been described as New York's signature sandwi...

 

此條目可参照英語維基百科相應條目来扩充。 (2023年7月2日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 安道爾公國 安道爾政府与政治系列条目 憲法(英语:Constitution of Andorra) 行政機關 兩大公 (歷任名單) 艾...

Area of the Thames For the film, see Pool of London (film). A view of the Pool of London, River Thames, around 1938 A 1905 Thames wharf map from London Bridge to Limehouse showing the Pool of London The Pool of London is a stretch of the River Thames from London Bridge to below Limehouse. Part of the Tideway of the Thames, the Pool was navigable by tall-masted vessels bringing coastal and later overseas goods—the wharves there were the original part of the Port of London. The Pool of London...

 

Number of vectors in any basis of the vector space A diagram of dimensions 1, 2, 3, and 4 In mathematics, the dimension of a vector space V is the cardinality (i.e., the number of vectors) of a basis of V over its base field.[1][2] It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension. For every vector space there exists a basis,[a] and all bases of a vector space have equal cardinality;[b&...