Hydrotalkit

Hydrotalkit
Hydrotalkit aus Snarum, Modum, Buskerud, Norwegen (Größe: 8,4 × 5,2 × 4,1 cm)
Allgemeines und Klassifikation
IMA-Nummer

2016 s.p.[1]

IMA-Symbol

Htc[2]

Andere Namen

Völknerit[3]

Chemische Formel Mg6Al2[(OH)16|CO3]·4H2O[4]
Mineralklasse
(und ggf. Abteilung)
Carbonate und Nitrate (ehemals Nitrate, Carbonate und Borate)
System-Nummer nach
Strunz (8. Aufl.)
Lapis-Systematik
(nach Strunz und Weiß)
Strunz (9. Aufl.)
Dana

Vb/D.02b
V/E.03-010

5.DA.50
16b.06.02.01
Kristallographische Daten
Kristallsystem trigonal
Kristallklasse; Symbol ditrigonal-skalenoedrisch; 32/m
Raumgruppe R3m (Nr. 166)Vorlage:Raumgruppe/166[4]
Gitterparameter a = 3,05 Å; c = 22,81 Å[4]
Formeleinheiten Z = 3/8[4]
Physikalische Eigenschaften
Mohshärte 2
Dichte (g/cm3) 2,03 bis 2,09
Spaltbarkeit vollkommen nach {0001}
Bruch; Tenazität biegsam, aber nicht elastisch
Farbe farblos, weiß, bräunlich
Strichfarbe weiß
Transparenz durchsichtig
Glanz Seidenglanz bis Wachsglanz, Perlmuttglanz
Kristalloptik
Brechungsindizes nω = 1,511 bis 1,531
nε = 1,495 bis 1,529[5]
Doppelbrechung δ = 0,016[5]
Optischer Charakter einachsig negativ

Hydrotalkit (Internationaler Freiname: Hydrotalcit), früher auch Völknerit,[3] ist ein selten vorkommendes Mineral aus der Mineralklasse der „Carbonate und Nitrate“ mit der chemischen Zusammensetzung Mg6Al2[(OH)16|CO3]·4H2O[4] und damit chemisch gesehen ein wasserhaltiges Magnesium-Aluminium-Carbonat mit zusätzlichen Hydroxidionen.

Kristallographisch gesehen ist Hydrotalkit ein Polytyp, das heißt seine Kristallstruktur besteht aus einem Schichtgitter mit abwechselnd in hexagonaler bzw. trigonaler Symmetrie kristallisierenden Struktureinheiten. Zur Unterscheidung werden diese zwar gelegentlich als Hydrotalkit-2H bzw. Hydrotalkit-3R bezeichnet,[6] gelten jedoch nicht als eigenständige Modifikationen und Minerale.[1] Die hexagonale Phase war bis 2012 als Mineral Manasseit bekannt, wurde aber dann als nicht selbstständiger Polytyp von der International Mineralogical Association (IMA) diskreditiert.

Hydrotalkit entwickelt meist durchsichtige, hypidiomorphe bis idiomorphe, tafelige Kristalle bis etwa 4 mm Größe mit seiden- bis wachsglänzenden Kristallflächen. Auch blättrige bis faserige Mineral-Aggregate werden gefunden.

Etymologie und Geschichte

Erstmals gefunden wurde Hydrotalkit 1842 in der „Solvverkets Pyrit Mine“ bei Snarum in der norwegischen Kommune Modum und beschrieben durch Carl Christian Hochstetter,[7] der das Mineral nach seinem talkartigen Aussehen und seinem Wassergehalt (altgriechisch ὕδωρ hýdor, „Wasser“) benannte.

Die Stoffgruppe der Hydrotalkite beinhaltet neben den natürlichen auch die synthetischen Varietäten des basischen Doppelsalzes Hydrotalkit. Die ersten umfassenden Arbeiten zu dieser Mineralgruppe leisteten Frondel (1941) mit seiner Klassifizierung der Pyroaurit- und der Sjögrenit-Gruppe, sowie Feitknecht und Gerber (1942) mit ihrer Arbeit über Magnesium-Aluminium-Doppelhydroxid.

Klassifikation

In der veralteten 8. Auflage der Mineralsystematik nach Strunz gehörte der Hydrotalkit zur Mineralklasse der „Nitrate, Carbonate und Borate“, genauer zur Unterklasse der „Carbonate“ (Vb) und dort zur Abteilung „Wasserhaltige Carbonate mit fremden Anionen“, wo er gemeinsam mit Pyroaurit, Reevesit und Stichtit die „Pyroaurit-Reihe“ mit der Systemnummer Vb/D.02b innerhalb der „Sjögrenit-Pyroaurit-Gruppe“ (Vb/D.02) bildet.

In der zuletzt 2018 überarbeiteten Lapis-Systematik nach Stefan Weiß, die formal auf der alten Systematik von Karl Hugo Strunz in der 8. Auflage basiert, erhielt das Mineral die System- und Mineralnummer V/E.03-010. Dies entspricht ebenfalls der Abteilung „Wasserhaltige Carbonate, mit fremden Anionen“, wo Hydrotalkit zusammen mit Comblainit, Desautelsit, Fougèrit, Karchevskyit, Mössbauerit, Putnisit, Pyroaurit, Reevesit, Sergeevit, Stichtit, Takovit und Trébeurdenit die „Hydrotalkitgruppe“ mit der Systemnummer V/E.03 bildet.[8]

Die von der International Mineralogical Association (IMA) zuletzt 2009 aktualisierte[9] 9. Auflage der Strunz’schen Mineralsystematik ordnet den Hydrotalkit in die verkleinerte Klasse der „Carbonate und Nitrate“ (die Borate bilden hier eine eigene Klasse), dort aber ebenfalls in die Abteilung „Carbonate mit zusätzlichen Anionen; mit H2O“ ein. Diese ist allerdings weiter unterteilt nach der relativen Größe der beteiligten Kationen. Das Mineral ist hier entsprechend seiner Zusammensetzung in der Unterabteilung „Mit mittelgroßen Kationen“ zu finden, wo es zusammen mit Comblainit, Desautelsit, Pyroaurit, Reevesit, Stichtit und Takovit die „Hydrotalkitgruppe“ mit der Systemnummer 5.DA.50 bildet.

In der vorwiegend im englischen Sprachraum gebräuchlichen Systematik der Minerale nach Dana hat Hydrotalkit die System- und Mineralnummer 16b.06.02.01. Das entspricht wie in der veralteten 8. Auflage der Strunz’schen und der Lapis-Systematik der gemeinsamen Klasse der „Carbonate, Nitrate und Borate“ und dort der Abteilung und gleichnamigen Unterabteilung „Carbonate – Hydroxyl oder Halogen“. Hier ist das Mineral in der „Sjögrenit-Hydrotalkitgruppe (Hydrotalcit-Untergruppe: Rhomboedrisch)“ zu finden, in der auch Stichtit, Pyroaurit, Desautelsit und Droninoit eingeordnet sind.

Die Vertreter der Gruppe unterscheiden sich teilweise nur durch unterschiedliche Stapelfolgen der Oktaederschichten voneinander. Daraus ergibt sich entweder ein hexagonales (2H) oder ein rhomboedrisches (3R) Kristallgitter.

Kristallstruktur

Hydrotalkit besteht aus einem Schichtgitter mit abwechselnd in hexagonaler bzw. trigonaler Symmetrie kristallisierenden Struktureinheiten.

Da die oben aufgeführten Parameter für ‚a‘ in etwa mit denen von Brucit übereinstimmen, weisen diese Minerale keine Fernordnung von Magnesium und Aluminium auf. Ihre Elementarzellen enthalten 3 oder 2 Metallionen (M2+ und M3+) sowie 3/8 beziehungsweise 1/4 [CO3]2−. Solche aufgeteilten Elementarzellengehalte sind ungewöhnlich für Phasen mit scheinbar fester Stöchiometrie und führte auch dazu, dass Allman und Jepsen 1969 eine R3mVorlage:Raumgruppe/166-Zelle mit verdoppelten a- und c-Parametern (a = 6,13 Å, c = 46,15 Å und Z = 3) für Hydrotalcit beschrieben.[10]

Neben den natürlichen Vertretern der Hydrotalkit-Familie, die als Zwischenschichtanionen ausschließlich CO32−-Anionen und OH-Gruppen enthalten, lassen sich synthetisch auch Hydrotalkite mit anderen Zwischenschichtanionen darstellen. So beschreibt Allmann (1968) einen leicht verzerrten Ca2Al(OH)6½SO4·3H2O-Hydrotalkit. Ein Mg/Zn-Misch-Hydrotalkit mit Sulfat-Anionen wurde von Kooli, Kosuge, Hibino und Tsunashima (1993) synthetisiert. Ebenfalls von Kooli, Kosuge und Tsunashima (1995a) wurden auch Hydrotalkite mit gemischter Me3+-Position synthetisiert und untersucht (Ni-Al/Cr-CO3 und Ni-Al/Fe-CO3). Gerade die Ni-Hydrotalkite sind Gegenstand der Forschung [z. B. Faure, Borthomieu, Delmas (1991), Clause, M.Gazzano, Trifiro, Vaccari, ZatorskiI (1991), Ehlsissen, Delahaye-Vidal, Genin, Figlarz, Willmann (1993)], vor allem wegen ihrer Bedeutung als Elektrodenmaterial in modernen Energiespeicherzellen.

Eigenschaften

Hydrotalkit besitzt die Fähigkeit, durch graduelle Abgabe von Aluminiumhydroxid Säuren zu binden und findet deshalb vielfältigen Einsatz in der Industrie und als Arzneimittel.

Bildung und Fundorte

Hydrotalkit bildet sich vorwiegend hydrothermal durch sekundäre Zersetzung von Serpentinit. Begleitminerale sind neben Serpentinit unter anderem noch Manasseit, Dolomit und Hämatit.

Weltweit konnte Hydrotalkit bisher (Stand: 2010) an rund 60 Fundorten nachgewiesen werden, so unter anderem in Australien, Deutschland, Frankreich, Griechenland, Israel, Italien, Kanada, Norwegen, Österreich, Polen, Rumänien, Russland, Schweden, Südafrika, Tadschikistan, Tschechien, Türkei, Ungarn, im Vereinigten Königreich (Großbritannien) und in den Vereinigten Staaten von Amerika (USA).[5]

Verwendung

Hydrotalkit wird hauptsächlich in der Medizin als Antazidum bei Übersäuerung des Magens (Hyperazidität) zur Neutralisierung der Magensäure verwendet. Bekannte Handelsnamen sind unter anderem Talcid® (Bayer AG, Wiechert 1976) oder Altacit® (Roussel Lab., Playle 1974)

In der angewandten Chemie dient Hydrotalkit als Katalysator, um diverse organische Verbindungen herzustellen oder auch, um organische Lösungen oder schwermetallhaltige Abfälle zu binden.

Synthetisch hergestellte Hydrotalkite werden auch als Stabilisatoren in der PVC-Produktion eingesetzt. Dabei reagieren sie mit dem bei der Alterung von PVC entstehenden HCl.[11]

Siehe auch

Literatur

  • F. Kooli, K. Kosuge, T. Hibinos, A.Tsunashima: Synthesis and Properties of Mg-Zn-Al-SO4 Hydrotalcite-like Compounds. In: Journal of Materials Science. Band 28, 1993, S. 2769–2773, doi:10.1007/BF00356216 (englisch).
  • F. Kooli, K. Kosuge, A. Tsunishima: New Ni-Al-Cr and Ni-Al-Fe Carbonate Hydrotalcite-like Compounds: Synthesis and Characterization. In: Journal of Solid State Chemistry. Band 118, 1995, S. 285–291, doi:10.1006/jssc.1995.1346 (englisch).
  • O. Clause, M. Gazzano, F. Trifiro, A. Vaccar, L. Zatorski: Preparation and thermal reactivity of nickel/chromium and nickel/aluminium hydrotalcite-like precursors. In: Applied Catalysis. Band 73, 1991, S. 217–236, doi:10.1016/0166-9834(91)85138-L (englisch).
  • Hydrotalcite. In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America. 2001 (englisch, handbookofmineralogy.org [PDF; 55 kB; abgerufen am 30. November 2022]).
  • F. Rennemann: Untersuchung zur Protonenmobilität in synthetischen Hydrotalkiten. (englisch, rennemann.de [PDF; 11,4 MB; abgerufen am 20. Oktober 2024]).Untersuchung zur Protonenmobilität in synthetischen Hydrotalkiten (Memento vom 8. Oktober 2007 im Internet Archive) DNB 953522385
  • Friedrich Klockmann: Klockmanns Lehrbuch der Mineralogie. Hrsg.: Paul Ramdohr, Hugo Strunz. 16. Auflage. Enke, Stuttgart 1978, ISBN 3-432-82986-8, S. 583 (Erstausgabe: 1891).
  • Petr Korbel, Milan Novák: Mineralien-Enzyklopädie (= Dörfler Natur). Edition Dörfler im Nebel-Verlag, Eggolsheim 2002, ISBN 978-3-89555-076-8, S. 127.
  • C. Frondel: Constitution and polymorphism of the pyroaurite and sjögrenite groups. In: American Mineralogist. Band 26, Nr. 5, 1941, S. 295–315 (englisch, geoscienceworld.org [abgerufen am 20. Oktober 2024]).
  • W. Feitknecht, M. Gerber: Zur Kenntnis der Doppelhydroxide und basischen Doppelsalze III: über Magnesium-Aluminiumdoppelhydroxyd. In: Helvetica Chimica Acta. Band 25, 1942, S. 131–137 (wiley.com [abgerufen am 20. Oktober 2024]).
  • C. Hochstetter: Untersuchung über die Zusammensetzung einiger Mineraliel. In: Journal für praktische Chemie. Band 27, 1842, S. 375–378 (wiley.com [abgerufen am 20. Oktober 2024]).
  • R. Allmann: Die Doppelschichtstruktur der plättchenförmigen Calcium-Aluminium-Hydroxisalze am Beispiel des 3CaO*Al2O3*CaSO4*12(H2O). In: Neues Jahrbuch für Mineralogie. 1968, S. 140–144.
  • C. Faure, Y. Borthomieu, C. Delmas, M. Fouassier: Infrared characterization of turbostratic α- and well crystallized α*-cobalted nickel hydroxides. In: Journal of Power Sources. Band 36, Nr. 2, November 1991, S. 113–125 (englisch, sciencedirect.com [abgerufen am 20. Oktober 2024]).
  • T. K. Ehlsissen, A. Delahaye-Vidal, P. Genin, M. Figlarz, P. Willmann: Preparation and Characterization of Turbostratic Ni/Al Layered Double Hydroxides for Nickel Hydroxide Electrode Applications. In: Journal of Materials Chemistry. Band 3, Nr. 8, 1993, S. 883–888 (englisch, rsc.org).
  • A. C. Playle: The in vitro antacid and anti-pepsin activity of hydrotalcite. In: Pharmaceutica Acta Helvetica. Band 49, 1974, S. 298–302 (englisch).
  • E. Wiecher: Talcid, a new antacid. Report on an open 'Clinical Test'. In: Med. Welt. Band 27, 1976, S. 489–2491 (englisch).
  • W. Hofmeister, H. von Platen: Crystal Chemistry and Atomic Order in Brucite-Related Double-Layer Structures. In: Crystallography Reviews. Band 3, 1992, S. 3–29 (englisch, tandfonline.com [abgerufen am 20. Oktober 2024]).
Commons: Hydrotalcite – Sammlung von Bildern

Einzelnachweise

  1. a b Malcolm Back, Cristian Biagioni, William D. Birch, Michel Blondieau, Hans-Peter Boja und andere: The New IMA List of Minerals – A Work in Progress – Updated: November 2024. (PDF; 3,1 MB) In: cnmnc.units.it. IMA/CNMNC, Marco Pasero, November 2024, abgerufen am 8. Dezember 2024 (englisch).
  2. Laurence N. Warr: IMA–CNMNC approved mineral symbols. In: Mineralogical Magazine. Band 85, 2021, S. 291–320, doi:10.1180/mgm.2021.43 (englisch, cambridge.org [PDF; 351 kB; abgerufen am 8. Dezember 2024]).
  3. a b Carl Rammelsberg: Über den Völknerit (Hydrotalkit) von Snarum. In: Annalen der Physik und Chemie. Band 173, 1856, S. 296–300, doi:10.1002/andp.18561730209.
  4. a b c d Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. Chemical-structural Mineral Classification System. 9. Auflage. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 314 (englisch).
  5. a b c Hydrotalcite. In: mindat.org. Hudson Institute of Mineralogy, abgerufen am 8. Dezember 2024 (englisch).
  6. Crystallography of Hydrotalcite. In: mindat.org. Hudson Institute of Mineralogy, abgerufen am 8. Dezember 2024 (englisch).
  7. Aus der Praxis: Antazida – Vielfalt bei Hydrotalcid von Gode Meyer-Chlond (PDF; 282 kB) (Memento vom 2. Dezember 2012 im Internet Archive)
  8. Stefan Weiß: Das große Lapis Mineralienverzeichnis. Alle Mineralien von A – Z und ihre Eigenschaften. Stand 03/2018. 7., vollkommen neu bearbeitete und ergänzte Auflage. Weise, München 2018, ISBN 978-3-921656-83-9.
  9. Ernest H. Nickel, Monte C. Nichols: IMA/CNMNC List of Minerals 2009. (PDF; 1,9 MB) In: cnmnc.units.it. IMA/CNMNC, Januar 2009, archiviert vom Original am 29. Juli 2024; abgerufen am 30. Juli 2024 (englisch).
  10. a b c S. J. Mills, A. G. Christy, J-M. R. Génin, T. Kameda, F. Colombo: Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. In: Mineralogical Magazine. Band 76, Nr. 5, 2012, S. 1289–1336; hier: 1293 und 1296 (englisch, rruff.info [PDF; 1,1 MB; abgerufen am 8. Dezember 2024]).
  11. Johannes Karl Fink: A Concise Introduction to Additives for Thermoplastic Polymers. John Wiley & Sons, Salem, Massachusetts 2010, ISBN 0-470-60955-9 (englisch).