Die Summengleichung der komplizierten, über mehrere Zwischenstufen verlaufenden Umsetzung von D-Glucose zu Acetat, die deprotonierte Form der Essigsäure, lautet:
Glucose wird in der sogenannten „Glykolyse“ zu zwei Molekülen Pyruvat abgebaut. Diese werden anschließend oxidativ decarboxyliert, so dass sich – unter Verbrauch von Coenzym A – Acetyl-CoA und formal Wasserstoff bildet. Über die Zwischenstufe Acetylphosphat[1] entsteht schließlich unter ATP-Gewinn Acetat, welches ausgeschieden und nicht wie beim oxidativen Zuckerabbau über den Citratzyklus weiter abgebaut wird. Durch diese Prozesse entstehen zwei der drei Moleküle Acetat.
Das Besondere an der Homoacetatgärung ist die Bildung des dritten Acetat-Moleküls, welches man als den reduktiven Acetyl-CoA-Weg bezeichnet (siehe dort). Es wird aus den beiden bei vom Pyruvat abgespaltenen Kohlenstoffdioxid-Molekülen (CO2) reduktiv aufgebaut. Ein CO2-Molekül wird an einem Enzym zu Kohlenstoffmonoxid (CO) reduziert. Das zweite CO2-Molekül wird stufenweise zu einer Methylgruppe (-CH3) reduziert, wobei das CoenzymTetrahydrofolsäure eine wichtige Rolle spielt. Diese Methylgruppe wird über ein Cobalamin-Enzym mit dem Kohlenstoffmonoxid vereinigt und das Produkt als Acetyl-CoA abgespalten. Wie oben beschrieben wird Acetyl-CoA zu Acetat umgesetzt, wobei ATP erzeugt wird. Für die Reduktionen werden die ebenfalls bei der Glykolyse gebildeten Reduktionsmittel verwendet.
Da bei diesem zweiten Vorgang der Acetatbildung der vorher gebildete Wasserstoff wieder verbraucht wird, spricht man auch von einer „Syntrophie innerhalb einer Zelle“.
Diese Bakterien sind demnach chemolithotroph, das bedeutet, sie können als Elektronendonator (Reduktans) einen anorganischen Stoff (hier H2) nutzen. Außerdem sind sie Kohlenstoff-autotroph, das bedeutet, sie können ihren Kohlenstoffbedarf für das Wachstum allein aus Kohlenstoffdioxid (CO2) decken. Diese Umsetzung ist keine Gärung, weil bei der Umsetzung ein externer Elektronenakzeptor (CO2) und ein externer Elektronendonator (H2) verbraucht werden.