Giulietto Chiesa
|
Read other articles:
Pour les articles homonymes, voir Vingt-Sept-Février. Éphémérides Février 1er 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 27 janvier 27 mars Chronologies thématiques Croisades Ferroviaires Sports Disney Anarchisme Catholicisme Abréviations / Voir aussi (° 1852) = né en 1852 († 1885) = mort en 1885 a.s. = calendrier julien n.s. = calendrier grégorien Calendrier Calendrier perpétuel Liste de calendriers Nais...
Konsonan geser langit-langit nirsuaraçNomor IPA138Pengkodean karakterEntitas (desimal)çUnikode (heks)U+00E7X-SAMPACKirshenbaumCBraille Gambar Sampel suaranoicon sumber · bantuan Konsonan aproksiman langit-langit nirsuaraj̊Nomor IPA153 402APengkodean karakterEntitas (desimal)j̊Unikode (heks)U+006A U+030AX-SAMPAj_0 Konsonan desis langit-langit nirsuara adalah jenis dari suara konsonan langit-langit yang digunakan dalam berbagai bahasa. S...
Williamstown Theatre Festival'62 Center for Theatre & DanceJenisTeaterFrekuensiTahunanLokasiWilliams CollegeWilliamstown, MassachusettsAcara pertama1954Situs webwtfestival.org Williamstown Theatre Festival adalah sebuah teater musim panas di kampus Williams College, Williamstown, Massachusetts. Teater tersebut didirikan pada 1954 oleh direktur berita Williams College, Ralph Renzi, dan ketua program drama, David C. Bryant. Pranala luar Situs web resmi Williamstown Theatre Festival Williams...
Grand Prix de Lugano 2017 GénéralitésCourse71e Grand Prix de LuganoCompétitionUCI Europe Tour 2017 1.HCDate7 mai 2017Distance185,6 kmPays SuisseLieu de départLuganoLieu d'arrivéeLuganoÉquipes14Partants107Arrivants38Vitesse moyenne36,605 km/hSite officielSite officielRésultatsVainqueur Iuri Filosi (Nippo-Vini Fantini)Deuxième Marco Frapporti (Androni-Sidermec-Bottecchia)Troisième Davide Orrico (Sangemini-MG.Kvis) ◀20162018▶Documentation La 71e édition du Grand Prix de ...
Palazzo ApostolicoResidenza ufficiale del PonteficeLocalizzazioneStato Città del Vaticano LocalitàCittà del Vaticano IndirizzoPiazza San Pietro Coordinate41°54′13″N 12°27′23″E / 41.903611°N 12.456389°E41.903611; 12.456389Coordinate: 41°54′13″N 12°27′23″E / 41.903611°N 12.456389°E41.903611; 12.456389 Informazioni generaliCondizioniIn uso CostruzioneXII secolo-XIX secolo Stilerinascimentale UsoResidenza ufficiale del Pontefice Real...
French public television news channel This article is about a domestic television channel. For the international channel, see France 24. For the domestic radio network, see France Info (radio network). For the global service, see France Info. Television channel franceinfoLogo used since 2016CountryFranceBroadcast areaMetropolitan France and WorldwideHeadquartersParis, FranceProgrammingLanguage(s)FrenchPicture format576i (SDTV)1080i (HDTV)OwnershipOwnerFrance TélévisionsRadio FranceFrance M�...
För matematikern, se Petrus de Dacia (matematiker). Petrus de DaciaFödd1235 (cirka)[1]Gotland, SverigeDöd1289[1]Sankta Maria församling[1], SverigeMedborgare iSverige[2]SysselsättningHagiograf, författare[1], prior[1]NamnteckningRedigera Wikidata Petrus de Dacia, (latin, Peter från Danmark, syftande på Dacia (nordisk provins)) född på 1230-talet på Gotland, död 1289 i Visby, var en katolsk dominikanmunk som brukar räknas som Sveriges förste författare, även om ...
This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Medical City Denton – news · newspapers · books · scholar · JSTOR (April 2020) (Learn how and when to remove this message) Hospital in Texas, United StatesMedical City DentonHCAGeographyLocationDenton, Texas, United StatesOrganizationCare systemPublicTypeGeneralAffiliated universityNoneServicesEmergency de...
The Far Tottering and Oyster Creek Branch Railway (or Far Tottering and Oyster Creek Railway) was a 15 in (381 mm) gauge miniature railway created by Rowland Emett. A whimsical view of British rural life and embodying his typical fanciful mechanics,[1] it echoed the similar works of Heath Robinson and Rube Goldberg. The railway began in a series of cartoons in Punch magazine in 1939, as the Far Tottering and Oyster Creek Railway. Festival of Britain It was chosen as an attr...
Prehistoric period in Europe Left: The Venus of Hohle Fels. Right: Venus of Moravany, from Germany and Slovakia. 41,000–35,000 BC and around 22,800 BC Paleolithic Europe, or Old Stone Age Europe, encompasses the Paleolithic or Old Stone Age in Europe from the arrival of the first archaic humans, about 1.4 million years ago until the beginning of the Mesolithic (also Epipaleolithic) around 10,000 years ago. This period thus covers over 99% of the total human presence on the European continen...
Charity in United States This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (May 2014) (Learn how and when to remove this message) Fisher House FoundationFounded1990FounderZachary and Elizabeth FisherTypeNon-Profit OrganizationFocusService members, veterans and their familiesLocationRockville, Maryland, U.S.MethodCo...
Chiri ChiriAlbum studio karya MomolandDirilis4 September 2019 (2019-09-04)Direkam2018–2019GenreJ-popBahasaJepangLabelKingKronologi Momoland Momoland The Best ~Korean Ver.~(2018) Chiri Chiri(2019) Singel dalam album Chiri Chiri Bboom BboomDirilis: 13 Juni 2018 BaamDirilis: 7 November 2018 I'm So HotDirilis: 8 Mei 2019 Pinky LoveDirilis: 4 September 2019 Chiri Chiri adalah album studio debut berbahasa Jepang dari grup vokal wanita asal Korea Selatan Momoland. Album ini dirilis oleh K...
Vương cung Thánh đường Thánh StephenSzent István-székesegyházĐịa điểmSzékesfehérvárQuốc gia HungaryHệ pháiNhà thờ Công giáo La MãKiến trúcPhong cáchBaroque Vương cung Thánh đường Thánh Stephen[1] (tiếng Hungary: Szent István-székesegyház) còn được gọi là Nhà thờ Székesfehérvár[2][3] là tên của một nhà thờ Công giáo ở Hungary.[4] Đây là nhà thờ chính của thành phố Székes...
此生者传记条目需要补充更多可供查證的来源。 (2020年12月1日)请协助補充可靠来源,无法查证的在世人物内容将被立即移除。 鄭嘉嘉女歌手罗马拼音Zheng Ka-Ka英文名Wendyz Zheng昵称嘉嘉、靚聲和音、Wendyz仔国籍 加拿大出生7月6日 英屬香港职业歌手、創作人语言粵語、英語、國語宗教信仰基督教配偶Franky Chung(2015年结婚)音乐类型流行曲演奏乐器鋼琴、鍵盤、銀笛活跃�...
Egg dish Potato galettes, served with quail eggs Quail eggs are a kind of eggs as food, eaten and considered a delicacy in many parts of the world, including Asia, Europe, and North America. In Japanese cuisine, they are sometimes used raw or cooked as tamago in sushi and often found in bento lunches. Quail egg (left) as compared to a chicken egg (upper right) and a duck egg (lower right) (the quail egg being the smallest), in an adult human's hand In some other countries, eggs of quail are c...
James StormJames Storm nel 2015NomeJames Allen Cox[1] Nazionalità Stati Uniti Luogo nascitaFranklin (Tennessee)[2]1º giugno 1977[2] Ring nameJames Storm AllenatoreKelly WolfeShane Morton[2] Debutto1997[2] sito ufficiale Progetto Wrestling Manuale James Allen Cox, meglio conosciuto con il ring name James Storm (Franklin, 1º giugno 1977), è un wrestler statunitense, tra il 2002 e il 2015 e di nuovo tra il 2016 e il 2017 e il 2020 e il 2021 , ha m...
この項目では、山口県にある駅について説明しています。 新潟県にある駅については「越後下関駅」をご覧ください。 未開業の駅については「下関駅 (南京市)」をご覧ください。 下関駅[* 1] 東口駅ビル(2015年5月) しものせき Shimonoseki ◄幡生 (3.5 km) (6.3 km) 門司 JA52► 所在地 山口県下関市竹崎町四丁目3-1北緯33度57分1.46秒 東経130度55分23.1秒 / ...
この記事は特に記述がない限り、日本国内の法令について解説しています。また最新の法令改正を反映していない場合があります。 ご自身が現実に遭遇した事件については法律関連の専門家にご相談ください。免責事項もお読みください。 業務上過失致死傷等罪 法律・条文 刑法211条保護法益 生命・身体主体 業務に従事する者(不真正身分犯)客体 人実行行為 業務上...
荒川橋梁 荒川橋梁(2014年6月)基本情報国 日本所在地 東京都足立区 - 葛飾区 間交差物件 荒川建設 -1931年座標 北緯35度44分45.5秒 東経139度49分08.8秒 / 北緯35.745972度 東経139.819111度 / 35.745972; 139.819111構造諸元形式 ワーレントラス橋材料 鋼全長 446.99 m最大支間長 61 m関連項目 橋の一覧 - 各国の橋 - 橋の形式テンプレートを表示 荒川橋梁(あらかわきょうり�...
Polarization state The electric field vectors of a traveling circularly polarized electromagnetic wave. This wave is right-handed/clockwise circularly polarized as defined from the point of view of the source, or left-handed/anti-clockwise circularly polarized if defined from the point of view of the receiver. In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude and ...