In den meisten Anwendungen ist , was mit der namensgebenden Streckung einhergeht: Die Funktion fällt langsamer ab als die gewöhnliche Exponentialfunktion mit . Für erhält man die gestauchte Exponentialfunktion, für die Gaußfunktion. Anwendung ist unter anderem die Weibull-Verteilung.
Die gestreckte Exponentialfunktion wird auch als Kohlrausch-Funktion oder Kohlrausch-Williams-Watts-Funktion, nach Graham Williams und David C. Watts bezeichnet, die diese 1970 wieder entdeckten.[2]
↑R. Kohlrausch: Theorie des elektrischen Rückstandes in der Leidner Flasche. In: Annalen der Physik und Chemie Bd. 91, 1854, S. 56–82, 179–214; online (S. 56–82)online (S. 179–214).
↑ abG. Williams, D. C. Watts: Non-Symmetrical Dielectric Relaxation Behaviour Arising from a Simple Empirical Decay Function. In: Transactions of the Faraday Society Bd. 66, 1970, S. 80–85; doi:10.1039/TF9706600080