Bei der Chan-Umlagerung wird ein Acyloxacetat in der Anwesenheit einer starken Base, hier Lithiumdiisopropylamid (LDA), zu einem 2-Hydroxy-3-ketoester umgelagert:
Der Reaktionsmechanismus der Chan-Umlagerung verläuft wie folgt:
Die Methylengruppe des Acyloxacetats (1), hier blau markiert, ist so acide, dass sie mit starken, aber nicht nucleophilen Basen wie Lithiumdiisopropylamid (LDA) deprotoniert werden kann. Es bildet sich, bedingt durch die Deprotonierung, das Carbanion2. Der nucleophile Angriff des so generierten Anions auf die benachbarte Acylgruppe führt zu einem intermediären Epoxid3. Durch die Wanderung von Elektronen entsteht aus dem Epoxid unter Ringöffnung ein Alkoholat4. Die saure Aufarbeitung führt letztlich zu einer Hydroxygruppe und es entsteht das Produkt 2-Hydroxy-3-ketoester 5.[3]
↑S. D. Lee, T. H. Chan, K. S. Kwon: Rearrangement of α-acyloxyacetates into 2-hydroxy-3-ketoesters. In: Tetrahedron Letters. 25, Nr. 32, 1984, S. 3399–3402, doi:10.1016/S0040-4039(01)91030-5.
↑Robert A. Holton, Carmen Somoza, Hyeong Baik Kim, Feng Liang, Ronald J. Biediger, P. Douglas Boatman, Mitsuru Shindo, Chase C. Smith, Soekchan Kim: First total synthesis of taxol. 1. Functionalization of the B ring. In: Journal of the American Chemical Society. 116, Nr. 4, 1994, S. 1597–1598, doi:10.1021/ja00083a066.