Bewegung für eine Neue Kultur
|
Read other articles:
Untuk album, lihat Acoustic Kitty (album). Acoustic Kitty adalah sebuah proyek Badan Intelijen Pusat yang diluncurkan oleh Direktorat Sains dan Teknologi Badan Intelijen Pusat pada dekade 1960-an untuk memakai para kucing untuk memata-matai kedutaan besar dari Kremlin Moskwa dan Uni Soviet. Dalam prosedur selama sejam, seorang dokter bedah menanamkan sebuah mikrofon di daun telinga kucing, transmisi radio kecil di pangkal tengkoraknya dan jaring tipis pada bagian bulunya.[1] Referensi...
Сечевые стрельцыукр. Січові Cтрільці Годы существования 1914—1919 Страна УНР Входит в Армию Украинской Народной Республики Численность до 25 000 Участие в Советско-украинская война[d] Командиры Известные командиры Коновалец, Евгений Михайлович Медиафайлы на Викисклад�...
Video game remake 2019 video gameResident Evil 2Developer(s)CapcomPublisher(s)CapcomDirector(s)Kazunori KadoiYasuhiro AnpoProducer(s)Yoshiaki HirabayashiTsuyoshi KandaDesigner(s)Hidehiro GodaProgrammer(s)Masatoshi FukazawaArtist(s)Gez FrySatoshi TakamatsuWriter(s)Brent FriedmanComposer(s)Shusaku UchiyamaZhenlan KangMasami UedaSeriesResident EvilEngineRE EnginePlatform(s)PlayStation 4WindowsXbox OnePlayStation 5Xbox Series X/SNintendo SwitchReleasePS4, Windows, Xbox OneJanuary 25, 2019Amazon L...
Okiharu YasuokaOkiharu Yasuoka en 2017.FonctionsMinistre de la Justice2 août - 24 septembre 2008Représentant du Japon47e législature de la chambre des représentants du Japon (d)Première circonscription de la préfecture de Kagoshima11 décembre 1972 - 28 septembre 2017BiographieNaissance 11 mai 1939KagoshimaDécès 19 avril 2019 (à 79 ans)TokyoNom dans la langue maternelle 保岡興治Nationalité japonaiseFormation Université ChūōActivités Homme politique, juge, avocat, consei...
Китайский Новый год Новый год в Сингапуре Тип культурный, религиозный (шэнистский, буддийский, конфуцианский, даосский) Иначе Праздник Весны лунный Новый год Отмечается китайцами, китайскоязычными общинами и не-китайцами по всему миру В период с (2024) 10 февраля По (2024) 24 фе�...
Probability density of electrons being somewhere This article is about the quantum mechanical probability density of an electron. For the number density of electrons in a plasma, also called electron density, see Plasma (physics). Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either ...
Pour les articles homonymes, voir Rhodes (homonymie). Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (mars 2012). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pra...
International airport serving Guwahati, Assam, India LGBI and LGBIA redirect here. For other uses, see LGBI (disambiguation). Lokpriya Gopinath Bordoloi International AirportIATA: GAUICAO: VEGTSummaryAirport typePublic / MilitaryOwnerAirports Authority of IndiaOperatorGuwahati International Airport Limited[1]ServesGuwahatiLocationBorjhar, Guwahati, Assam, IndiaOpened1958; 66 years ago (1958)Focus city for Alliance Air Drukair FlyBig IndiGo Elevation AMSL49 ...
Norwegian painter (1788–1857) Johan Christian DahlPortrait of Johan Christian Dahl, by Carl Christian Vogel von Vogelstein, 1823BornJohan Christian Claussen Dahl(1788-02-24)24 February 1788Bergen, Denmark–NorwayDied14 October 1857(1857-10-14) (aged 69)Dresden, Kingdom of Saxony, German ConfederationNationalityNorwegianKnown forNorwegian landscape paintingMovementNorwegian romantic nationalism, German romanticismAwards Order of St. Olav Order of Vasa Order of the Dannebrog Johan ...
Raja Mesir (Firaun) ialah posisi yang ada dalam beberapa bentuk yang sejak 3000 SM sampai pertengahan abad ke-20. Sejak itu negara Mesir diperintah oleh seorang presiden Daftar penguasa Mesir Kuno Artikel utama: Daftar raja Mesir kuno Berikut adalah daftar raja, ratu, dan firaun Mesir kuno, dari periode awal sebelum 3000 SM sampai akhir dinasti Ptolemeus ketika Mesir menjadi salah satu provinsi Roma di bawah pemerintahan Augustus Caesar pada 30 SM. Tanggal-tanggal yang dicantumkan adalah perk...
David Zayas ai Satellite Awards 2007 David Zayas (Ponce, 15 agosto 1962) è un attore portoricano naturalizzato statunitense. È noto per i ruoli di Enrique Morales nella serie TV Oz, di Angel Batista nella serie TV Dexter e di Sal Maroni nella serie TV Gotham. Indice 1 Biografia 2 Filmografia 2.1 Cinema 2.2 Televisione 3 Doppiatori italiani 4 Altri progetti 5 Collegamenti esterni Biografia Nato a Porto Rico, ma cresciuto nel quartiere Bronx nella città di New York, Zayas entrò nella United...
Main article: Road Asphalt road in Norway A road is a thoroughfare, route, or way on land between two places that has been surfaced or otherwise improved to allow travel by foot or some form of conveyance, including a motor vehicle, cart, bicycle, or horse. Roads have been adapted to a large range of structures and types in order to achieve a common goal of transportation under a large and wide range of conditions. The specific purpose, mode of transport, material[1][2] and l...
1991 film by Joe Johnston The Rocketeers redirects here. For other topics, see Rocketeer. The RocketeerTheatrical release posterDirected byJoe JohnstonScreenplay by Danny Bilson Paul De Meo Story by Danny Bilson Paul De Meo William Dear Based onThe Rocketeerby Dave StevensProduced by Charles Gordon Lawrence Gordon Lloyd Levin Starring Billy Campbell Alan Arkin Jennifer Connelly Paul Sorvino Timothy Dalton CinematographyHiro NaritaEdited by Michael A. Stevenson Arthur Schmidt Music byJames Hor...
Questa voce o sezione sull'argomento matematica non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. In matematica, un modulo è una struttura algebrica che generalizza il concetto di spazio vettoriale richiedendo che gli scalari non costituiscano un campo ma un anello: un modulo su un anello A è quindi un gr...
British and American actress (1932–2011) For other uses, see Elizabeth Taylor (disambiguation). DameElizabeth TaylorDBEPublicity photo, late 1950sBornElizabeth Rosemond Taylor(1932-02-27)27 February 1932London, EnglandDied23 March 2011(2011-03-23) (aged 79)Los Angeles, California, U.S.Resting placeForest Lawn Memorial Park, Glendale, California, U.S.CitizenshipUnited KingdomUnited StatesOccupationActressYears active1941–2007WorksFull listSpouses Conrad Hilton Jr. ...
Storia della colonna infameImmagine di Francesco Gonin per l'edizione del 1840 AutoreAlessandro Manzoni 1ª ed. originale1840 Generesaggio Sottogenerestorico Lingua originaleitaliano AmbientazioneMilano durante la peste del 1630 Modifica dati su Wikidata · Manuale La Storia della colonna infame è un saggio storico scritto da Alessandro Manzoni, pubblicato come appendice storica al suo celeberrimo romanzo storico, I promessi sposi (nella sua edizione definitiva del 1840), in una sorta d...
American politician and businessman (born 1946) David StockmanStockman in 201725th Director of the Office of Management and BudgetIn officeJanuary 21, 1981 – August 1, 1985PresidentRonald ReaganPreceded byJim McIntyreSucceeded byJim MillerMember of the U.S. House of Representativesfrom Michigan's 4th districtIn officeJanuary 3, 1977 – January 21, 1981Preceded byEdward HutchinsonSucceeded byMark Siljander Personal detailsBornDavid Alan Stockman (1946-11-10) No...
Cat Aficionado AssociationLogo CAASingkatanCAATanggal pendirian3 Maret 2001Tujuanuntuk mempublikasikan dan memajukan ras-ras kucingLokasiBeijing, TiongkokWilayah layanan Negara-negara di AsiaSitus webTidak ada Cat Aficionado Association (atau CAA,[1] bahasa Indonesia: Perhimpunan Pencinta Kucing) adalah organisasi pendaftaran ras kucing terbesar di Tiongkok yang diakui secara internasional dalam hubungannya dengan American Cat Fanciers Association (ACFA) sebagai pendaftaran ras kucing...
Surface Transportation BoardSeal of the Surface Transportation BoardBoard overviewFormedJanuary 1, 1996Preceding BoardInterstate Commerce CommissionJurisdictionUnited States GovernmentHeadquartersWashington, D.C.Board executiveRobert E. Primus, ChairmanParent departmentindependent agencyKey documentInterstate Commerce Commission Termination ActWebsitewww.stb.gov The Surface Transportation Board (STB) of the United States is an independent federal agency that serves as an adjudicatory board. T...
The Wii Balance Board. This is a list of released video games for the Wii and Wii U video game consoles which allow use of the Balance Board accessory. The first game to support this accessory is Wii Fit. Wii This incomplete list is frequently updated to include new information. There are 115 games which support the Wii Balance Board. Title Developer Publisher Release date N. America Release date Europe Release date Japan 10 Minute Solution [1] Seamless Entertainment Activision June ...