Apocarotinoide sind eine Stoffklasse natürlich vorkommender Polyene, bei denen es sich um oxidative Spaltprodukte von Carotinoiden handelt.[1] Die Apocarotinoide zählen zu den Terpenoiden, bei denen die Endgruppe abgespalten und durch eine Carboxy-, Aldehyd- oder Hydroxygruppe ersetzt wird. Werden beide Endgruppen oxidativ gespalten, so handelt es sich um Diapocarotinoide.[2]
Bekannte Beispiele für Apocarotinoide sind die Vitamin-A-Verbindungen Retinal, Retinol und Retinsäuren[3]
-
Retinal
-
Retinol
-
Retinsäure
Vorkommen
Während Carotinoide ausschließlich in höheren Pflanzen gebildet werden und in deren Blättern, Früchten, Sprossen und Wurzeln vorkommen, kommen Apocarotinoide auch in tierischen Organismen als Metabolite mit der Nahrung aufgenommener Carotinoide vor. Sie finden sich als Chromoproteine im Blutplasma, im Eidotter, in den Federn mancher Vögel wie beispielsweise den Flamingos, in der Haut von Forellen, im Fleisch einiger Fische wie den Lachsen oder Lachsforellen, sowie in den Panzern von Krebsen (Crustaceen).[2]
Eigenschaften
Apocarotinoide haben verschiedene Funktionen:[3]
Bildung des C24-Apocarotinoids Bixin durch oxidative Spaltung
der 5–6- und 5'–6'-Doppelbindungen
Bildung des C10-Apocarotinoids Safranal und des C20-Apocarotinoids Crocetin durch oxidative Spaltung
der 7–8- und 7'–8'-Doppelbindungen
- Durch die Spaltung von Carotinoiden an den 9,10- und 9',10'-Doppelbindungen erhält man C13-Apocarotinoide, die zu den Duft- und Aromastoffen zählen. Es sind eine Vielzahl von Verbindungen mit einem Jonon-Grundgerüst bekannt, die meist blumige bis fruchtige Duftnoten aufweisen. So wird beispielsweise der Duft vieler Rosen durch Damascenone bestimmt.
Bildung der C13-Apocarotinoide β-Ionon, β-Damascon und β-Damascenon durch oxidative Spaltung
der 9–10- und 9'–10'-Doppelbindungen
Bildung des C
15-Apocarotinoids Abscisinsäure über
Xanthocin durch oxidative Spaltung
der 11–12-Doppelbindung von
Violaxanthin[5]
Biosynthese
Die Biosynthese der Apocarotinoide erfolgt durch carotinoidspaltende Enzyme, den Oxygenasen. Bei Menschen und Tieren erfolgt die Spaltung überwiegend mittig bei der Doppelbindung in 15–15'-Position, während die pflanzlichen Enzyme außermittig spalten. Die Carotinoidoxygenasen gehören zu den Nicht-Häm-Eisenenzymen und benötigen O2 sowie Fe2+ als Cofaktoren.[3]
Spaltung der 15–15'-Doppelbindung bei Carotinoiden durch Carotinoidoxygenasen aus tierischen Organismen,
beispielsweise β-Carotin Oxigenase (BCO) aus der
Fruchtfliege und carotinoidspaltende Monooxigenase 1 (CMO1)
aus Maus und Mensch.
Verschiedene pflanzliche Carotinoidoxygenasen (Corotenoid Cleavage Dioxygenases, CCD) spalten außermittig
die Doppelbindungen in der 5–6-, 5'–6'-, 7–8-, 7'–8'-, 9–10-, 9'–10'-, 11–12- oder 13–14-Position.
Einzelnachweise
- ↑ Shoib Ahmad Baba, Nasheeman Ashraf: Apocarotenoids of Crocus sativus L: From biosynthesis to pharmacology. Springer Nature, Sinfapore 2016, ISBN 978-981-10-1898-5, doi:10.1007/978-981-10-1899-2 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ a b Eberhard Breitmaier: Terpenes. Flavors, Fragrances, Pharmaca, Pheromones. Wiley-VCH, Weinheim 2006, ISBN 3-527-31786-4 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ a b c Michael H. Walter, Daniela S. Floß, Dieter Strack: Die facettenreiche Welt der Apocarotinoide. Farben, Düfte, Aromen und Hormone. In: Biologie in unserer Zeit. Band 39, Nr. 5, 2009, S. 336–344, doi:10.1002/biuz.200910402.
- ↑ Eintrag zu E 160b: Annatto, Bixin, Norbixin in der Europäischen Datenbank für Lebensmittelzusatzstoffe, abgerufen am 30. Juni 2022.
- ↑ Andrew D. Parry, Roger Horgan: Carotenoids and abscisic acid (ABA) biosynthesis in higher plants. In: Physiologia Plantarum. Band 82, Nr. 2, 1991, S. 320–326, doi:10.1111/j.1399-3054.1991.tb00100.x.