Prvoideálem v okruhu je každý takový vlastní ideál , že pro libovolné dva ideály splňující (tedy jejichž součin je podmnožinou ) platí nebo .
Jedná se o analogii prvočísel, u kterých lze obdobně vyslovit: Přirozené číslo je prvočíslem právě tehdy, pokud pro jakákoliv dvě přirozená čísla platí, že pokud dělí , pak dělí nebo dělí .
Příklady
- Ideál je prvoideálem pravě když je prvočíslo
- V okruhu všech polynomů s koeficienty z celých čísel je prvoideálem například ideál generovaný prvky 2 a X (jedná se o ideál tvořený všemi polynomy, které mají konstantní koeficient sudý).
- Každý maximální ideál je prvoideálem
Reference
V tomto článku byl použit překlad textu z článku Prime ideal na anglické Wikipedii.