Potenciál globálního oteplování

Potenciál globálního oteplování (PGO, často také GWP z anglického global warming potential) je měřítkem toho, kolik tepla v atmosféře zachytí skleníkový plyn v určitém časovém horizontu ve vztahu k oxidu uhličitému. Porovnává množství tepla zachyceného určitou hmotností daného plynu s množstvím tepla zachyceného stejnou hmotností oxidu uhličitého a vyjadřuje se jako činitel oxidu uhličitého (jehož potenciál globálního oteplování je standardizován na 1).

PGO se počítá ke konkrétnímu časovému horizontu, obvykle 20, 100 nebo 500 let. Uživatelská volba tohoto časového horizontu může výrazně ovlivnit numerické hodnoty získané pro ekvivalenty oxidu uhličitého. V Páté hodnotící zprávě Mezivládního panelu pro změnu klimatumetan životnost 12,4 let a díky zpětné vazbě klima-uhlíkové cyklu má potenciál globálního oteplování 86 v průběhu 20 let a 34 pro 100 let v reakci na emise. Při změně časového horizontu z 20 na 100 let se proto PGO pro metanu snižuje přibližně 2,5krát.[1] PGO závisí na následujících faktorech:

  • absorpce infračerveného záření danými částicemi plynu
  • spektrální umístění jejích absorbujících vlnových délek
  • životnost částice plynu v atmosféře

Vysoký PGO tedy koreluje s velkou absorpcí infračerveného záření a dlouhou životností v atmosféře. Závislost PGO na vlnové délce absorpce je složitější. I když plyn absorbuje záření při určité vlnové délce, nemusí to ovlivnit jeho PGO, pokud atmosféra již absorbuje nejvíce záření při této vlnové délce. Plyn má největší účinek, pokud absorbuje v „okně“ vlnových délek, kde je atmosféra prozatím poměrně průhledná. Závislost PGO jako funkce vlnové délky byla nalezena empiricky a byla publikována jako graf.[2]

Protože PGO skleníkového plynu závisí přímo na jeho infračerveném spektru, je použití infračervené spektroskopie ke studiu skleníkových plynů zcela zásadní ve snaze porozumět dopadu lidských činností na globální oteplování.

Látky podléhající omezením podle Kjótského protokolu buď rychle zvyšují své koncentrace v zemské atmosféře, nebo mají velký PGO.

Výpočet potenciálu globálního oteplování

Stejně jako radiační působení poskytuje zjednodušený způsob porovnávání různých faktorů, o nichž se předpokládá, že vzájemně ovlivňují klimatický systém, jsou potenciály globálního oteplování (PGO) jedním typem zjednodušeného indexu založeného na radiačních vlastnostech, které lze použít k odhadu potenciálu budoucnostního dopadu emisí různých plynů na klimatický systém v relativním smyslu. PGO je založen na řadě faktorů, včetně radiačního působení (schopnost absorbovat infračervené záření) každého plynu vzhledem k účinnosti oxidu uhličitého, jakož i rychlosti rozpadu každého plynu (množství odebrané z atmosféry za daný počet let) ve srovnání s oxidem uhličitým.[3]

Kapacita radiačního působení (RP) je množství energie na jednotku plochy, na jednotku času, absorbované skleníkovým plynem, které by jinak bylo ztraceno do vesmíru. Lze ji vyjádřit vzorcem:

kde index i představuje interval 10 inverzních centimetrů. Absi představuje integrovaný infračervené absorbance vzorku v tomto intervalu a Fi představuje RP pro tento interval.[zdroj?] Mezivládní panel pro změnu klimatu (IPCC) poskytuje obecně uznávané hodnoty pro PGO, které se mírně změnily v letech 1996 až 2001. Přesná definice způsobu výpočtu potenciálů je uvedena ve Třetí hodnotící zprávě IPCC z roku 2001.[4] PGO je definován jako poměr časově integrovaného radiačního působení z okamžitého uvolnění 1 kg sledované látky vzhledem k hmotnosti 1 kg referenčního plynu:

kde TH je časový horizont, během kterého se uvažuje výpočet; ax je radiační působení kvůli jednotkovému zvýšení atmosférického nadbytku látky (tj. Wm−2 kg−1) a [x (t)] je časově závislý rozpad nadbytku látky po okamžitém uvolnění v čase t = 0. Jmenovatel obsahuje odpovídající množství pro referenční plyn (tj CO2). Radiační působení ax a ar nemusí být v průběhu času nutně konstantní. Zatímco absorpce infračerveného záření mnoha skleníkovými plyny kolísá lineárně s jejich nadbytkem, několik důležitých z nich vykazuje nelineární chování pro současné a pravděpodobné budoucí nadbytky (např. CO2, CH4 a N2O). U těchto plynů bude relativní radiační nutkání záviset na nadbytku, a tedy na budoucím scénáři, který byl přijat.

Protože všechny výpočty PGO jsou porovnány s CO2, který je nelineární, ovlivní se všechny hodnoty PGO. Předpokládáme-li jinak, jak je uvedeno výše, povede to k nižším PGO pro jiné plyny, než by tomu bylo v případě podrobnějšího přístupu. To objasňuje, zatímco zvyšující se koncentrace CO2 mají menší a menší vliv na radiační absorpci při zvyšování koncentrací ppm, tzv. výkonnější skleníkové plyny, jako je metan a oxid dusný, mají frekvence tepelné absorpce jiné než CO 2, které nejsou naplněny (nasyceny) až CO 2, takže rostoucí koncentrace těchto plynů jsou mnohem významnější.

Význam časového horizontu

PGO látky závisí na době, pro kterou se potenciál vypočítává. Plyn, který je rychle odstraněn z atmosféry, může mít zpočátku velký účinek, ale pro delší časové období, jakmile byl odstraněn, se stává méně důležitým. Metan má tedy potenciál 34 pro časový horizont 100 let, ale 86 pro 20 let; naopak, fluorid sírový má potenciál 22 800 pro 100 let, ale 16 300 pro 20 let (dle Třetí hodnotící zprávy IPCC). Hodnota PGO závisí na tom, jak se koncentrace plynu v atmosféře v průběhu času snižuje. To často není přesně známo, a proto by hodnoty neměly být považovány za přesné. Z tohoto důvodu je při citování PGO důležité uvést odkaz na výpočet.

PGO pro směs plynů lze získat z průměru hmotnostních frakcí vážených průměrů PGO jednotlivých plynů.[5]

Regulátoři obvykle používají časový horizont 100 let (např. organizace „Californian Air Resources Board“).

Hodnoty

Oxid uhličitý má PGO přesně 1 (protože je základní jednotkou, se kterou jsou porovnávány všechny ostatní skleníkové plyny). Hodnoty pro jiné plyny byly odhadnuty

  • na str. 714 v Páté hodnotící zprávě IPCC AR5 z roku 2013;[6] strana 732 obsahuje mnohem více sloučenin, než je níže uvedeno uvedeno.
  • na str. 212 ve Čtvrté hodnotící zprávě IPCC AR4 z roku 2007;[7] tato stránka obsahuje mnohem více sloučenin, než je níže uvedeno.
  • ve Třetí hodnotící zprávě IPCC TAR z roku 2001. Ta obsahuje mnohem více sloučenin, které zde nejsou zobrazeny.
Hodnoty a životnost PGO Životnost v letech Potenciál globálního oteplování (PGO) Zdroj s / bez

zpětné vazby klima-uhlíkového cyklu

20 let 100 let 500 let
Metan 12,4 86 34 2013 s. 714 se zpětnou vazbou[6]
Metan 12,4 84 28 2013 s. 714 bez zpětné vazby
Oxid dusný (N2O) 121,0 268 298 2013 s. 714 se zpětnou vazbou
Oxid dusný (N2O) 121,0 264 265 2013 s. 714 bez zpětné vazby
HFC-134a (fluorovodík) 13.4 3790 1550 2013 s. 714 se zpětnou vazbou
HFC-134a (fluorovodík) 13.4 3710 1300 2013 s. 714 bez zpětné vazby
CFC-11 (chlorfluoruhlovodík) 45,0 7020 5350 2013 s. 714 se zpětnou vazbou
CFC-11 (chlorfluoruhlovodík) 45,0 6900 4660 2013 s. 714 bez zpětné vazby
Tetrafluorid uhličitý (CF4) 50000 4950 7350 2013 s. 714 se zpětnou vazbou
Tetrafluorid uhličitý (CF4) 50000 4880 6630 2013 s. 714 bez zpětné vazby
Hodnoty a životnost PGO Životnost v letech Potenciál globálního oteplování (PGO) Zdroj
20 let 100 let 500 let
Perfluorotributylamin (PFTBA) 7100 2013 GRL
Metan 96 32 2018 Sci + 2016 GRL
Metan 12 72 25 7,6 2007 str. 212[7]
Metan 12 62 23 7 2001
Oxid dusný 114 289 298 153 2007 str. 212
Oxid dusný 114 275 296 156 2001
HFC-134a (fluorovodík) 14 3830 1430 435 2007 str. 212
HFC-134a (fluorovodík) 13.8 3300 1300 400 2001
CFC-11 (chlorfluoruhlovodík) 45,0 6730 4750 1620 2007 str. 212
CFC-11 (chlorfluoruhlovodík) 45,0 6300 4600 1600 2001
Tetrafluormethan (CF4) 50000 5210 7390 1120 2007 str. 212
Tetrafluormethan (CF4) 50000 3900 5700 8900 2001
HFC-23 (fluorovodík) 270 12 000 14 800 12 200 2007 str. 212
HFC-23 (fluorovodík) 260 9400 12 000 10 000 2001
fluorid sírový 3200 16 300 22 800 32 600 2007 str. 212
fluorid sírový 3200 15 100 22 200 32 400 2001

Hodnoty uvedené v tabulce předpokládají, že je uvolněna stejná hmotnost sloučeniny; rozdílné poměry budou výsledkem přeměny jedné látky na druhou. Například spalování metanu na oxid uhličitý by snížilo dopad globálního oteplování, ale o menší činitel než 25: 1, protože hmotnost spáleného metanu je menší než hmotnost uvolněného oxidu uhličitého (poměr 1: 2,74).[8] Pokud se začne s 1 tunou metanu, který má PGO 25, po spálení se získá 2,74 tun CO2, každá tuna, která má PGO 1. Jedná se o čisté snížení o 22,26 tun PGO, čímž se sníží účinek globálního oteplování v poměru 25:2,74 (přibližně 9×).

Potenciál globálního oteplování perfluorotributylaminu (PFTBA) v časovém horizontu 100 let se odhaduje na přibližně 7100. V elektrotechnickém průmyslu se používá od poloviny 20. století pro elektronické testování a jako prostředek pro přenos tepla.[9] PFTBA má dosud nejvyšší radiační působení (relativní účinnost skleníkových plynů, které omezuje únik dlouhovlnného záření zpět do vesmíru[10]) jakékoli molekuly detekované v atmosféře.[11] Vědci našli ve vzorcích vzduchu v Torontu průměrně 0,18 částic PFTBA na bilion, zatímco oxidu uhličitého je kolem 400 částic na milion.[12]

Vodní pára

Vodní pára je jedním z primárních skleníkových plynů, ale některé problémy brání přímému výpočtu PGO. Má hluboké infračervené absorpční spektrum s více a širšími absorpčními pásy než CO2, a také absorbuje nenulové množství radiace v její nízké absorbující spektrální oblasti.[13] Dále její koncentrace v atmosféře závisí na teplotě vzduchu a dostupnosti vody; za použití globální průměrné teploty ~16 °C například vytváří průměrnou vlhkost ~18 000 ppm na hladině moře (CO2 je ~400 ppm takže koncentrace [H2O] / [CO2] ~ 45×). Na rozdíl od jiných skleníkových plynů se vodní pára v životním prostředí nerozkládá, takže namísto časově závislého rozpadu umělého nebo nadměrného množství molekul CO2 musí být použit průměr za určité časové období nebo jiná opatření v souladu s „časově závislým rozpadem“ uvedeným výše. Dalším problémem, který komplikuje výpočet, je rozložení teploty Země a rozdílné masy pevniny na severní a jižní polokouli.

Další metriky: Potenciální změna globální teploty (PGT)

Potenciál změny globální teploty je dalším způsobem, jak kvantifikovat změnu poměru plynu vzhledem k CO2 v globální průměrné povrchové teplotě použité pro specifické časové období.[14]

Odkazy

Reference

V tomto článku byl použit překlad textu z článku Global warming potential na anglické Wikipedii.

  1. IPCC AR5 WG1 2013, s. 711-714, Chapter8, Table 8.7.
  2. Matthew Elrod, "Greenhouse Warming Potential Model." Podle ELROD, M. J. Greenhouse Warming Potentials from the Infrared Spectroscopy of Atmospheric Gases. Journal of Chemical Education. 1999, s. 1702. DOI 10.1021/ed076p1702. Bibcode 1999JChEd..76.1702E. 
  3. Glossary: Global warming potential (GWP) [online]. U.S. Energy Information Administration [cit. 2011-04-26]. Dostupné online. 
  4. https://web.archive.org/web/20160131050350/http://www.grida.no/climate/ipcc_tar/wg1/247.htm
  5. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases Annex IV.
  6. a b Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang (2013) "Anthropogenic and Natural Radiative Forcing" Archivováno 6. 2. 2017 na Wayback Machine.. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Anthropogenic and Natural Radiative Forcing Archivováno 6. 2. 2017 na Wayback Machine.
  7. a b Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland (2007) "Changes in Atmospheric Constituents and in Radiative Forcing". In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  8. This is so, because of the reaction formula: CH4 + 2O2 → CO2 + 2 H2O. As mentioned in the article, the oxygen and water is not considered for GWP purposes, and one molecule of methane (molar mass = 16.04 g mol−1) will yield one molecule of carbon dioxide (molar mass = 44.01 g mol−1). This gives a mass ratio of 2.74. (44.01/16.04≈2.74).
  9. MINTZ, Zoe. New Greenhouse Gas Discovered, PFTBA Has Higher Global Warming Impact Than CO2. International Business Times [online]. 2013-12-10 [cit. 2020-01-02]. Dostupné online. 
  10. Radiative efficiency definition of Radiative efficiency in the Free Online Encyclopedia. Encyclopedia2.thefreedictionary.com. Retrieved on 2014-04-23.
  11. Newly discovered greenhouse gas '7,000 times more powerful than CO2' | Environment. theguardian.com. 10 December 2013.
  12. New greenhouse gas discovered by U of T chemists | The Star. thestar.com [online]. [cit. 2020-01-02]. Dostupné online. (anglicky) 
  13. These are normalized absorbance spectrum; these must be compensated for using the Beer–Lambert law for atmospheric concentrations, http://www.chem.arizona.edu/chemt/C21/sim/gh/ Archivováno 5. 2. 2016 na Wayback Machine. this plot provides a resultant application: en:Sunlight#Composition and power
  14. IPCC AR5 WG1 2013, s. 663, Anthropogenic and Natural Radiative Forcing (Chapter 8).

Literatura

  • IPCC AR5 WG1, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [online]. Cambridge University Press, 2013 [cit. 2019-12-27]. Dostupné online. ISBN 978-1-107-05799-9. 
  • IPCC AR4 WG1, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [online]. Příprava vydání Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; and Miller, H.L.. Cambridge University Press, 2007 [cit. 2019-12-27]. Dostupné online. ISBN 978-0-521-88009-1. 
  • IPCC TAR WG1, 2001. Climate Change 2001: The Scientific Basis - Contribution of Working Group I to the IPCC Third Assessment Report [online]. Příprava vydání Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; and Johnson, C.A.. Cambridge University Press, 2001 [cit. 2019-12-27]. Dostupné online. ISBN 0-521-80767-0. 

Související články

Externí odkazy

Read other articles:

Citra satelit NASA di Kepulauan Ayu. Kepulauan Ayau adalah kepulauan kecil di selatan Kepulauan Asia dan di utara Kepulauan Raja Ampat di Indonesia. Kelompok pulau ini terbentuk dari dua atol karang. Di peta-peta tua, kepulauan ini muncul dengan nama Kepulauan Ajaoe, mengikuti nama Belanda Ajaoe-eilanden. Pantai di pulau-pulau ini adalah tempat bertelur bagi penyu belimbing (Dermochelys coriacea). Perairan di lepas Kepulauan Ayau merupakan situs snorkel dan selam skuba yang cocok. Secara admi...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Bellan RoosRoos pada 1927Lahir(1901-05-25)25 Mei 1901Nynäshamn, SwediaMeninggal8 April 1990(1990-04-08) (umur 88)Stockholm, SwediaPekerjaanPemeranTahun aktif1933-1979 Bellan Roos (25 Mei 1901 – 8 April 1990) adalah seorang p...

 

 

Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Inggris. Jika halaman ini ditujukan untuk komunitas bahasa Inggris, halaman itu harus dikontribusikan ke Wikipedia bahasa Inggris. Lihat daftar bahasa Wikipedia. Artikel yang tidak diterjemahkan dapat dihapus secara cepat sesuai kriteria A2. Jika Anda ingin memeriksa artikel ini, Anda boleh menggunakan mesin penerjemah. Namun ingat, mohon tidak men...

Disambiguazione – USD rimanda qui. Se stai cercando altri significati, vedi USD (disambigua). Dollaro statunitenseNome localeUnited States dollar Moneta da 1 cent Banconote del dollaro statunitense Codice ISO 4217USD Stati Stati Unitie tutte le dipendenze Isole BES Ecuador El Salvador Isole Marshall Micronesia Palau Timor Est Turks e Caicos Isole Vergini Britanniche Territorio britannico dell'Oceano Indiano Zimbabwe S...

 

 

Den här artikeln behöver fler eller bättre källhänvisningar för att kunna verifieras. (2011-12) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. För andra betydelser, se Madeira (olika betydelser). Madeira Ö och autonom region Flagga Vapen Land  Portugal Stad Porto SantoMachicoSanta CruzCâmara de LobosSantanaCaniço Huvudstad Funchal H�...

 

 

Pour les articles homonymes, voir Action française (homonymie). Cet article ou cette section fait référence à des sources qui ne semblent pas présenter la fiabilité et/ou l'indépendance requises. Vous pouvez aider, soit en recherchant des sources de meilleure qualité pour étayer les informations concernées, soit en attribuant clairement ces informations aux sources qui semblent insuffisantes, ce qui permet de mettre en garde le lecteur sur l'origine de l'information. Voir la page d...

Philosophical essay by Harry Frankfurt On Bullshit AuthorHarry FrankfurtLanguageEnglishGenrePhilosophyPublisherPrinceton University PressPublication date2005Media typePrintISBN978-0691122946 On Bullshit is a 2005 book (originally a 1986 essay) by American philosopher Harry G. Frankfurt which presents a theory of bullshit that defines the concept and analyzes the applications of bullshit in the context of communication. Frankfurt determines that bullshit is speech intended to persuade wit...

 

 

Church in Illinois, United StatesSt. Martha ParishSt. Martha ParishLocation in the Chicago area42°02′11.4″N 87°46′50.9″W / 42.036500°N 87.780806°W / 42.036500; -87.780806LocationMorton Grove, Cook County, IllinoisCountryUnited StatesDenominationRoman CatholicWebsitesaintmarthachurch.orgHistoryDedicated1919AdministrationArchdioceseChicagoClergyArchbishopBlase J. CupichBishop(s)Francis J. Kane[1]Pastor(s)Rev. Dennis O'Neill [2] St. Martha Cat...

 

 

Bifidobacterium Bifidobacterium adolescentis Klasifikasi ilmiah Kerajaan: Bacteria Filum: Actinobacteria Kelas: Actinobacteria Subkelas: Actinobacteridae Ordo: Bifidobacteriales Famili: Bifidobacteriaceae Genus: BifidobacteriumOrla-Jensen 1924 Species B. adolescentis B. angulatum B. animalis B. asteroides B. bifidum B. boum B. breve B. catenulatum B. choerinum B. coryneforme B. cuniculi B. denticolens B. dentium B. gallicum B. gallinarum B. indicum B. infantis B. inopinatum (Untuk B. lactis ...

American record label Shady RecordsParent companyUniversal Music GroupFounded1999; 25 years ago (1999)FounderEminemPaul RosenbergDistributor(s)Interscope Geffen A&M (US)Polydor (United Kingdom)Universal Music Group (International)GenreHip hopCountry of originUnited StatesLocationNew York City, New York, U.S.Detroit, Michigan, U.S.Official websiteshadyrecords.com Shady Records is an American record label founded by rapper Eminem and his manager Paul Rosenberg in 1999, fol...

 

 

2009 single by Birdman featuring Drake and Lil Wayne4 My Town (Play Ball)Single by Birdman featuring Drake and Lil Waynefrom the album Priceless ReleasedDecember 7, 2009GenreHip hopLength4:21LabelCash MoneyUniversal MotownSongwriter(s)Bryan WilliamsAubrey GrahamDwayne CarterMatthew SamuelsProducer(s)Boi-1daBirdman singles chronology Til da Sun Come Up (2009) 4 My Town (Play Ball) (2009) I Made It (Cash Money Heroes) (2010) Drake singles chronology Say Something(2009) 4 My Town (Play B...

 

 

Chemical compound (H₂NNO₂) Nitramide   Nitrogen, N  Hydrogen, H  Oxygen, O Names IUPAC name Nitramide Other names NitroamideNitramine[1]Nitroamine[1]NitroammoniaNitroazane Identifiers CAS Number 7782-94-7 Y 3D model (JSmol) Interactive image ChEBI CHEBI:29273 Y ChemSpider 22941 Y PubChem CID 24534 UNII B8N6F7BJTL Y CompTox Dashboard (EPA) DTXSID20999028 InChI InChI=1S/H2N2O2/c1-2(3)4/h1H2 YKey: SFDJOSRHYKHMOK-UHFF...

2023 British filmBank of DaveDirected byChris FogginWritten byPiers AshworthProduced by Matt Williams Karl Hall Piers Tempest Starring Joel Fry Phoebe Dynevor Rory Kinnear Hugh Bonneville Paul Kaye Jo Hartley Cathy Tyson CinematographyMike Stern SterzynskiEdited byMartina ZamoloMusic byChristian HensonProductioncompanies Tempo Productions Limited Future Artists Entertainment Ingenious Media Rojovid Films Distributed byNetflix William Morris Endeavor (WME) EntertainmentRelease date 16 Ja...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

  关于与「內閣總理大臣」標題相近或相同的条目页,請見「內閣總理大臣 (消歧義)」。 日本國內閣總理大臣內閣總理大臣紋章現任岸田文雄自2021年10月4日在任尊称總理、總理大臣、首相、阁下官邸總理大臣官邸提名者國會全體議員選出任命者天皇任期四年,無連任限制[註 1]設立法源日本國憲法先前职位太政大臣(太政官)首任伊藤博文设立1885年12月22日,...

Battle in the Korean WarThis article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Battle of the Punchbowl – news · newspapers · books · scholar · JSTOR (May 2023)Battle of the PunchbowlPart of the Korean WarMap of the Punchbowl, Heartbreak Ridge and Bloody RidgeDate31 August – 21 September 1951LocationThe ...

 

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Popponesset Creek – news · newspapers · books · scholar · JSTOR (April 2012) (Learn how and when to remove this message) The Popponesset Bay System Popponesset Creek is a small waterway in Mashpee, Massachusetts on Cape Cod. On both ends, it connects with Popponesset Bay. Poppon...

 

 

إيعات   الإحداثيات 34°03′58″N 36°09′16″E / 34.06621111°N 36.15431111°E / 34.06621111; 36.15431111   تقسيم إداري  البلد لبنان[1]  التقسيم الأعلى قضاء بعلبك  رمز جيونيمز 273753  تعديل مصدري - تعديل   إيعات هي بلدة لبنانية تقع في قضاء بعلبك من محافظة بعلبك الهرمل. تشتهر بعمود�...

пор Міністри праці і соціальної політики України Віталій Васильченко (1990—1991) • Михайло Каскевич (1991—1996) • Микола Білоблоцький (1996—1998) • Іван Сахань (1998—2002) • Михайло Папієв (2002—2005) • В'ячеслав Кириленко (2005) • Іван Сахань (2005—2006) • Михайло Папієв (2...

 

 

Political designation in Ancient Rome Novus homo or homo novus (lit. 'new man'; pl.: novi homines or homines novi) was the term in ancient Rome for a man who was the first in his family to serve in the Roman Senate or, more specifically, to be elected as consul. When a man entered public life on an unprecedented scale for a high communal office, then the term used was novus civis (plural: novi cives) or new citizen.[1] History Cicero In the Early Republic, tradition held that bo...