Pentamethylcyclopentadien slouží jako prekurzor 1,2,3,4,5-pentamethylcyklopentadienylových (Cp* (C5Me5) ligandů. Na rozdíl od méně substituovaných derivátů cyklopentadienu Cp*H nepodléhá dimerizaci.
Příprava a výroba
Pentamethylcyklopentadien lze zakoupit. Příprava je možná z tiglaldehydu, jako meziprodukt se přitom tvoří 2,3,4,5-tetramethylcyklopent-2-enon.[3]
Další možností je adice 2-butenyllithia na ethylacetát následovaná kysele katalyzovanou dehydrocyklizací:[4][5]
Některé komplexy Cp* lze připravit přesuny silylových skupin:
Cp*Li + Me3SiCl → Cp*SiMe3 + LiCl
Cp*SiMe3 + TiCl4 → Cp*TiCl3 + Me3SiCl
Určité komplexy Cp* je možné získat z hexamethylovaného Dewarova benzenu. Tímto způsobem se získával [Rh(C5Me5)Cl2]2, ovšem tento postup byl nahrazen využitím lépe dostupného Cp*H.
Z se připravují chloromůstkové dimery [Cp*IrCl2]2 a [Cp*RhCl2]2. Při příslušných reakcích se používají halogenovodíkové kyseliny, které indukují potřebné přesmyky hexamethylovaného Dewarova benzenu[8][9] na substituovaný pentamethylcyklopentadien, po kterém následuje reakce s hydrátem chloridu iriditého[10] nebo rhoditého.[11]
Srovnání s ostatními Cp ligandy
Pentamethylcyklopentadienylové komplexy jsou v několika oblastech odlišné od cyklopentadienylových (Cp). V důsledku vyšší elektronové hustoty jsou Cp*− komplexy lepšími donory elektronů.[12] Fluorovaný ligand (trifluormethyl)tetramethylcyklopentadienyl, C5Me4CF3, spojuje vlastnosti Cp a Cp*: má sterické efekty Cp*, ale elektronovými vlastnostmi se podobá Cp, dodávání elektronů z methylových skupin je znemožněno elektronakceptorní povahou trifluormethylového substituentu.[13]
Sterické efekty vyvolávané pentamethylcyklopentadienovmi molekulami stabilizují komplexy s méně stabilními ligandy oslabením mezimolekulových sil, což omezuje tvorbu polymerních struktur. Tyto komplexy bývají také lépe rozpustné v nepolárních rozpouštědlech. Methylové skupiny v komplexech Cp* rovněž mohou podstoupit aktivace vazeb C-H. Cyklopentadienylové komplexy s velkými substituenty mohou vytvářet i výrazně silnější sterické efekty než jaké vytvářejí komplexy Cp*.
↑L. De Vries. Preparation of 1,2,3,4,5-Pentamethyl-cyclopentadiene, 1,2,3,4,5,5-Hexamethyl-cyclopentadiene, and 1,2,3,4,5-Pentamethyl-cyclopentadienylcarbinol. The Journal of Organic Chemistry. 1960. DOI10.1021/jo01080a623.
↑THRELKEL, S.; BERCAW, J. E.; SEIDLER, P. F.; STRYKER, J. M.; BERGMAN, R. G. 1,2,3,4,5-Pentamethylcyclopentadiene. Org. Synth.. 1993. Dostupné online.Je zde použita šablona {{Citation}} označená jako k „pouze dočasnému použití“.; Coll. Vol.. S. 505.Je zde použita šablona {{Citation}} označená jako k „pouze dočasnému použití“.Je zde použita šablona {{OrgSynth}} označená jako k „pouze dočasnému použití“.
↑J. W. Kang; K. Mosley; P. M. Maitlis. Mechanisms of Reactions of Dewar Hexamethylbenzene with Rhodium and Iridium Chlorides. Chemical Communications. 1968, s. 1304–1305. DOI10.1039/C19680001304.
↑Takuya Kuwabara; Ryogen Tezuka; Mikiya Ishikawa; Takuya Yamazaki; Shintaro Kodama; Youichi Ishii. Ring Slippage and Dissociation of Pentamethylcyclopentadienyl Ligand in an (η 5 -Cp*)Ir Complex with a κ 3 - O , C , O Tridentate Calix[4]arene Ligand under Mild Conditions. Organometallics. 2018-06-25, s. 1829–1832. ISSN0276-7333. DOI10.1021/acs.organomet.8b00257.
↑Paul G. Gassman; John W. Mickelson; Mikiya Ishikawa; John R. Sowa. 1,2,3,4-Tetramethyl-5-(trifluoromethyl)cyclopentadienide: a unique ligand with the steric properties of pentamethylcyclopentadienide and the electronic properties of cyclopentadienide. Journal of the American Chemical Society. 1992-08-01, s. 6942–6944. ISSN0002-7863. DOI10.1021/ja00043a065.