Oxokomplexy kovů jsou komplexní sloučeniny obsahující oxoligandy, O2−. Tyto ligandy mohou být navázané na jedno i na více kovových center, takže se mohou vyskytovat jako koncové (terminální) i jako můstkové ligandy. Oxo ligandy stabilizují vysoká oxidační čísla kovů.[1]
Běžnou reakcí oxokomplexů je olace, kdy se v důsledku kondenzace přeměňují nízkomolekulární oxidy na polymery obsahující řetězce typu M-O-M. Olace obvykle začínají deprotonacemi hydroxokomplexů a jsou základem mineralizace a srážení oxidů kovů.
Methanmonooxygenáza oxiduje methan na methanol prostřednictvím přenosu atomu kyslíku z želežičitého meziproduktu ve svém nehemovém diželezovém centru.[14]
Výzkum se zaměřuje na provádění takovýchto reakcí pomocí syntetických katalyzátorů.[6]
Sloučeniny molybdenu a wolframu
Oxo (nebo obdobný sulfido ligand) je velmi rozšířený v chemii molybdenu a wolframu, objevuje se v rudách těchto prvků, v jejich syntetické chemii, a také se podílí na jejich biologických účincích. Za výchozí látky biosyntéz se považují oxometaláty MoO4−2 a WO4−2. Všechny Mo/W enzymy, s výjimkou nitrogenáz, mají na sebe navázanou jednu nebo více molybdopterinovýchprostetických skupin. Mo/W centra mění svá oxidační čísla z VI na IV a zpět. Přestože jsou mezi těmito enzymy určité rozdíly, tak všechny zprostředkovávají přenosy atomů kyslíku mezi Mo/W centry a substrátem.[15]
Tyto komplexy využívají jako meziprodukty oxidace vody koncové oxo ligandy. Vytvářejí téměř všechen molekulový kyslík v zemské atmosféře.
Oxo zeď
Jako „oxo zeď“ se označuje teorie používaná k vysvětlení nepřítomnosti oktaedrických symetrií u kovových center komplexů s koncovými oxo ligandy a s více než 5 d elektrony.[18][19]
Oxosloučeniny ve skupinách vanadu až železa (skupinách 3–8) jsou početné, zatímco koncové oxosloučeniny kovů skupin kobaltu až zinku (9–12) jsou vzácné; podobně je tomu i u jiných sloučenin s násobnými vazbami kov–ligand. Oznámené výjimky z tohoto pravidla[20][21][22] byly vyvráceny.[23][24][25]
Komplex iridia Ir(O)(mesityl)3 může vypadat jako výjimka z oxo zdi, kterou ovšem není, protože komplex není oktaedrický.[7]
Trigonální symetrie způsobuje přeuspořádání d orbitalů kovů pod degenerované π* molekulové orbitaly. U komplexů se třemi osami symetrie mohou existovat vícenásobné vazby obsahující až 7 d elektronů.[18]
↑Bernard Meunier; Samuël P. de Visser; Sason Shaik. Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chemical Reviews. 2004, s. 3947–3980. ISSN0009-2665. DOI10.1021/cr020443g. PMID15352783.
↑R. P. Hausinger. Fe(II)/α-Ketoglutarate-Dependent Hydroxylases and Related Enzymes. Critical Reviews in Biochemistry and Molecular Biology. 2004, s. 21–68. DOI10.1080/10409230490440541. PMID15121720.
↑M. J. Coon. Epoxidation of olefins by cytochrome P450: Evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant. Proceedings of the National Academy of Sciences. 1998-01-20, s. 3555–3560. DOI10.1073/pnas.95.7.3555. PMID9520404. Bibcode1998PNAS...95.3555V.
↑T. C. Brunold. Synthetic Iron-Oxo 'Diamond Core' Mimics Structure of Key Intermediate in Methane Monooxygenase Catalytic Cycle. Proceedings of the National Academy of Sciences of the United States of America. 2007, s. 20641–20642. DOI10.1073/pnas.0710734105. PMID18093936. Bibcode2007PNAS..10420641B.
↑S. Mukund; M. W. W. Adams. Molybdenum and Vanadium Do Not Replace Tungsten in the Catalytically Active Forms of the Three Tungstoenzymes in the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Bacteriology. 1996, s. 163–167. DOI10.1128/jb.178.1.163-167.1996. PMID8550411.
↑Virginia A. Larson; Beatrice Battistella; Kallol Ray; Nicolai Lehnert; Wonwoo Nam. Iron and manganese oxo complexes, oxo wall and beyond. Nature Reviews Chemistry. 2020, s. 404–419. DOI10.1038/s41570-020-0197-9.
↑ANDERSON, Travis M.; NEIWERT, Wade A.; KIRK, Martin L.; PICCOLI, Paula M. B.; SCHULTZ, Arthur J.; KOETZLE, Thomas F.; MUSAEV, Djamaladdin G. A Late-Transition Metal Oxo Complex: K7Na9[O=PtIV(H2O)L2], L = [PW9O34]9-. Science. 2004-12-17, s. 2074–2077. Dostupné online. ISSN0036-8075. DOI10.1126/science.1104696. PMID15564312.Je zde použita šablona {{Cite journal}} označená jako k „pouze dočasnému použití“.
↑ANDERSON, Travis M.; CAO, Rui; SLONKINA, Elena; HEDMAN, Britt; HODGSON, Keith O.; HARDCASTLE, Kenneth I.; NEIWERT, Wade A. A Palladium-Oxo Complex. Stabilization of This Proposed Catalytic Intermediate by an Encapsulating Polytungstate Ligand. Journal of the American Chemical Society. 2005-08-01, s. 11948–11949. Dostupné online. ISSN0002-7863. DOI10.1021/ja054131h. PMID16117527.Je zde použita šablona {{Cite journal}} označená jako k „pouze dočasnému použití“.
↑CAO, Rui; ANDERSON, Travis M.; PICCOLI, Paula M. B.; SCHULTZ, Arthur J.; KOETZLE, Thomas F.; GELETII, Yurii V.; SLONKINA, Elena. Terminal Gold-Oxo Complexes. Journal of the American Chemical Society. 2007-09-01, s. 11118–11133. Dostupné online. ISSN0002-7863. DOI10.1021/ja072456n. PMID17711276.Je zde použita šablona {{Cite journal}} označená jako k „pouze dočasnému použití“.
↑O’HALLORAN, Kevin P.; ZHAO, Chongchao; ANDO, Nicole S.; SCHULTZ, Arthur J.; KOETZLE, Thomas F.; PICCOLI, Paula M. B.; HEDMAN, Britt. Revisiting the Polyoxometalate-Based Late-Transition-Metal-Oxo Complexes: The "Oxo Wall" Stands. Inorganic Chemistry. 2012, s. 7025–7031. DOI10.1021/ic2008914. PMID22694272.Je zde použita šablona {{Cite journal}} označená jako k „pouze dočasnému použití“.
↑RITTER, Stephen K. Metal-Oxo Papers Retracted [online]. June 12, 2012 [cit. 2021-05-15]. Dostupné online.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“.
↑HADLINGTON2012-06-14T00:00:00+01:00, Simon. Oxo wall still stands as inorganic papers retracted [online]. [cit. 2021-05-15]. Dostupné online.Je zde použita šablona {{Cite web}} označená jako k „pouze dočasnému použití“.