Konečné těleso (též Galoisovo těleso na počest Évarista Galoise, obvykle značeno ) je v matematice, přesněji v abstraktní algebře, označení pro takové těleso, které má konečný počet prvků.
Vlastnosti
- Počet prvků konečného tělesa je roven , kde je prvočíslo a je kladné přirozené číslo.
- Charakteristika tělesa je rovna právě prvočíslu .
- Konečná tělesa jsou komutativní (Wedderburnova věta).
- Konečná tělesa lze klasifikovat podle velikosti; platí totiž, že až na izomorfismus existuje vždy jen jediné konečné těleso o daném počtu prvků.
- Žádné konečné těleso není algebraicky uzavřené neboť označíme-li prvky konečného tělesa po řadě , můžeme zkonstruovat mnohočlen, který je zřejmě stupně alespoň 1 a přitom žádný z není jeho kořenem.
Reprezentace
jsou celá čísla modulo dané prvočíslo neboli . Typická reprezentace Galoisova tělesa jsou polynomy nad modulo definiční polynom stupně . Těleso tímto způsobem dostaneme právě když je definiční polynom ireducibilní.
Ne vždy je x primitivním prvkem tělesa (generátorem multiplikativní grupy). Například pro GF(32) při definičním polynomu x2+1 generuje pouze polovinu prvků a jako generátor je potřeba vzít x+1. Při definičním polynomu x2+x-1 ale x stačí.
Využití
Konečná tělesa jsou důležitým nástrojem mimo jiné teorie čísel, algebraické geometrie a kryptografie.
Využití v kódování
V kódování jsou nejčastěji používána . V takovém případě je používán izomorfismus mezi číslem dle jeho bitového zápisu na polynomy nad bity tak, že bit řádu určuje koeficient u .
Pozor, ač jsou při různé volbě definičního polynomu odpovídající tělesa isomorfní, kódování dává různé výsledky v závislosti na volbě definičního polynomu.
Při výpočtech nad sčítání odpovídá bitový xor. Pro násobení je nejjednodušší vytvořit si tabulky logaritmů a exponentů primitivního prvku tělesa resp. v číselném pohledu .
Tabulky logaritmů vytváříme na základě tabulky exponentů. Tabulku exponentů vyplňujeme postupně. Je-li reprezentace , pak reprezentaci dostaneme buď jako , pokud je nebo pomocí xor s číslem odpovídajícím definičnímu polynomu (pokud ).
Máme-li jak tabulky logaritmů, tak tabulky mocnin primitivního prvku, můžeme násobení počítat (pro nenulové činitele ) pomocí . Je-li jakýkoli činitel nulový, je samozřejmě i součin nulový.
Externí odkazy