Na otázku, zda má toto záření vlnový nebo částicový charakter, nelze odpovědět jednoznačně. Některé jevy v oblasti optiky lze vysvětlit pouze prostřednictvím vlnového charakteru světla, zatímco jiné jevy (např. fotoelektrický jev) lze vysvětlit pouze pomocí fotonů.
Z tohoto hlediska lze tedy tvrdit, že obě teorie se vzájemně doplňují, a pro daný jev je vždy nutné vybrat vhodný teoretický popis. Světlo tedy chápeme jako fyzikální jev, který má vlnovou i korpuskulární povahu. Právě tato skutečnost je chápána jako dualita vln a částic.
Částicová povaha elektromagnetického záření se projevuje především v krátkovlnných oblastech (tzn. při vysokých energiích fotonů), vlnová povaha v oblasti dlouhovlnné.
Zobecnění
Kvantová teorie ukazuje, že vlnové vlastnosti vykazují (v určitých situacích) všechny částice. Tato skutečnost je jedním z důležitých objevů kvantové fyziky. Takovou hypotézu vyslovil poprvé roku 1924Louis-Victor de Broglie jenž vyslovil domněnku, že i částice lze popsat vlnovou délkou o velikosti:
,
kde h je Planckova konstanta a p je hybnost částice. Ve svých důsledcích to znamená, že každému vlnění lze přiřadit určité částicové vlastnosti, a naopak, každá částice se může projevovat jako vlnění. Například rozlišení v elektronovém mikroskopu, kde látku sondují elektrony, závisí na jejich kinetické energii - vyšší rychlost (i kinetická energie) odpovídá vyšší hybnosti, čímž se snižuje jejich vlnová délka a lze tedy dosáhnout vyššího rozlišení.
Makroskopická analogie
Například pomocí vibrující hladiny lze vytvořit klasickou analogii (Faradayova vlna odpovídá de Broglieho vlně).[1] Experimentálně realizované makroskopické chování jako u difrakce, atomárního orbitu či tunelování provedl Yves Couder.[2] Později také vědci z MIT vytvořili analogii "pilotní vlny", kdy statistika poloh náhodně se pohybující makroskopické částice vykazovala tvar jako u vlnové funkce.[3] A také australští vědci, kteří tak například vytvořili i krystalizaci.[4]