Amminkomplexy měly důležitou úlohu v rozvoji koordinační chemie, konkrétně určování stereochemie a struktury komplexů. Připravují se snadno a poměr počtu atomů kovu a dusíku lze zjistit jednoduše. Alfred Werner při studiích zaměřených hlavně na amminkomplexy rozvinul svůj model struktury koordinačních sloučenin, za který získal Nobelovu cenu.[3][4]
Jedním z prvních popsaných amminkomplexů byla Magnusova zelená sůl, obsahující tetraamminplatnatý kation [Pt(NH3)4]2+.[5]
Reineckeova sůl je velmi stálým aniontovým diamminkomplexem, kde centrum tvoří chromité kationty.
Kobaltité a chromité komplexy
Chromité a kobaltité amminkomplexy mají historický význam. Jsou poměrně stálé, což umožňuje oddělování jednotlivých izomerů,[8] například chlorid tetraammindichlorchromitý, [Cr(NH3)4Cl2]Cl, se vyskytuje ve dvou podobách - jako fialový cis izomer a jako zelený trans izomer. Chlorid hexamminkobaltitý, [Co(NH3)6]Cl3, má jediný izomer. Reineckeova sůl, NH4[Cr(NCS)4(NH3)2]·H2O, je známa od roku in 1863.[9]
Nikelnaté, zinečnaté a měďnaté komplexy
Zinečnaté ionty tvoří bezbarvý tetraamminkomplex o vzorci [Zn(NH3)4]2+,[10] podobně jako většina zinečnatých komplexů mající tetraedrickou strukturu. Chlorid hexaamminnikelnatý je fialový a příslušný měďnatý komplex tmavě modrý.
Měďné, stříbrné a zlatné komplexy
Měďné amminkomplexy, jako například [Cu(NH3)3]+, jsou nestálé.[11] Se stříbrnými ionty se vytváří diamminkomplex [Ag(NH3)2]+, mající lineární geometrii.[12] Právě tento komplex se vytváří při rozpouštění chloridu stříbrného ve vodném roztoku amoniaku a také je aktivní složkou Tollensova činidla. Obdobný komplex chloridu zlatného má šest amoniakových jednotek, ale jen dvě jsou ligandy.[13]
Reakce
Výměny ligandů a redoxní reakce
Protože je amoniak silnějším ligandem než voda, tak jsou amminkomplexy stabilnější než odpovídající aquakomplexy a také mají slabší oxidační schopnosti. Druhou z těchto vlastností dokládá například stabilita [Co(NH3)6]3+ ve vodných roztocích a neexistence [Co(H2O)6]3+ (který by oxidoval vodu).
Acidobazické reakce
Po navázání na ionty kovů není amoniak zásaditý, to se projevuje mimo jiné stabilitou některých amminkomplexů, jako je například [Co(NH3)6]3+, v silně kyselých roztocích. Pokud je vazba M-NH3 slabá, tak se amoniak uvolní a může být protonován, jako tomu je u [Ni(NH3)6]2+.
Amminligandy jsou kyselejší než amoniak (pKa ~ 33). U vysoce kationtových komplexů, například [Pt(NH3)6]4+, lze získat konjugovanou zásadu. Deprotonace kobaltitých ammin-halogenodových komplexů, jakým je [CoCl(NH3)5]2+, snižuje stabilitu vazeb Co-Cl podle Sn1CB mechanismu.
Deprotonace může být doprovázená oxidací, čímž mohou být amminkomplexy přeměněny na nitrosylové komplexy:[13]
Amminkomplexy kovů mají řadu využití. Cisplatina (PtCl2(NH3)2), obsahující dva chloro- a dva amminové ligandy, se používá na léčbu nádorů.[14] K těmto účelům bylo vyvinuto i několik dalších komplexů platinových kovů.
Při oddělování jednotlivých platinových kovů z jejich rud se používá srážení [RhCl(NH3)5]Cl2. V některých případech se palladium získává posouváním rovnováhy mezi [Pd(NH3)4]Cl2, PdCl2(NH3)2 a Pt(NH3)4[PdCl4].
Při zpracovávání celulózy se k jejímu rozpouštění někdy používá měďnatý amminkomplex nazývaný Schweizeovo činidlo ([Cu(NH3)4(H2O)2](OH)2), připravovaný reakcí vodného roztoku měďnaté soli s amoniakem. Nejprve se sráží modrý hydroxid měďnatý, který se následně po přidání dalšího amoniaku rozpustí:
↑A. von Zelewsky "Stereochemistry of Coordination Compounds" John Wiley: Chichester, 1995. ISBN0-471-95599-X.
↑Alfred Werner "Beitrag zur Konstitution anorganischer Verbindungen" Zeitschrift für anorganische Chemie 1893, Volume 3, pages 267–330.DOI:10.1002/zaac.18930030136Je zde použita šablona {{DOI}} označená jako k „pouze dočasnému použití“.
↑"Werner Centennial" George B. Kauffman, Ed. Adv. Chem. Ser., 1967, Volume 62. ISBN978-0-8412-0063-0
↑von Zelewsky, A. "Stereochemistry of Coordination Compounds" John Wiley: Chichester, 1995. ISBN0-471-95599-X.
↑Neil J. Hair; James K. Beattie. Structure of Hexaaquairon(III) Nitrate Trihydrate. Comparison of Iron(II) and Iron(III) Bond Lengths in High-Spin Octahedral Environments. Inorganic Chemistry. 1977, s. 245–250. DOI10.1021/ic50168a006.
↑ESSMANN, Ralf; KREINER, Guido; NIEMANN, Anke; RECHENBACH, Dirk; SCHMIEDING, Axel; SICHLA, Thomas; ZACHWIEJA, Uwe. Isotype Strukturen einiger Hexaamminmetall(II)-halogenide von 3d-Metallen: [V(NH3)6]I2, [Cr(NH3)6]I2, [Mn(NH3)6]Cl2, [Fe(NH3)6]Cl2, [Fe(NH3)6]Br2, [Co(NH3)6]Br2, und [Ni(NH3)6]Cl2. Zeitschrift für anorganische und allgemeine Chemie. 1996, s. 1161–1166. DOI10.1002/zaac.19966220709.Je zde použita šablona {{Cite journal}} označená jako k „pouze dočasnému použití“.
↑Basolo, F.; Pearson, R. G. "Mechanisms of Inorganic Reactions." John Wiley and Sons: New York: 1967. ISBN0-471-05545-X
↑Reinecke, A. "Über Rhodanchromammonium-Verbindungen" Annalen der Chemie und Pharmacie, volume 126, pages 113-118 (1863). DOI: 10.1002/jlac.18631260116Je zde použita šablona {{DOI}} označená jako k „pouze dočasnému použití“..
↑Kersti B. Nilsson; Ingmar Persson. The coordination chemistry of copper(I) in liquid ammonia, trialkyl and triphenyl phosphite, and tri-n-butylphosphine solution. Dalton Transactions. 2004, s. 1312–1319. DOI10.1039/B400888J.
↑K. B. Nilsson; I. Persson; V. G. Kessler. Coordination Chemistry of the Solvated AgI and AuI Ions in Liquid and Aqueous Ammonia, Trialkyl and Triphenyl Phosphite, and Tri-n-butylphosphine Solutions. Inorganic Chemistry. 2006, s. 6912. DOI10.1021/ic060175v.
↑ abcL. M. Scherf; S. A. Baer; F. Kraus; S. M. Bawaked; H. Schmidbaur. Implications of the Crystal Structure of the Ammonia Solvate [Au(NH3)2]Cl·4NH3. Inorganic Chemistry. 2013, s. 2157–2161. DOI10.1021/ic302550q.
↑S. J. Lippard, J. M. Berg "Principles of Bioinorganic Chemistry" University Science Books: Mill Valley, CA; 1994. ISBN0-935702-73-3
↑A. Rosenblatt; T. C. Stamford; R. Niederman. Silver diamine fluoride: a caries "silver-fluoride bullet". Journal of Dental Research. 2009, s. 116–125. DOI10.1177/0022034508329406. PMID19278981.