Živé kationtové polymerizace se vyznačují řiditelnou iniciací a propagací s malým podílem vedlejších reakcí při terminaci a přenosu řetězce. K přenosu a terminaci dochází, ale v ideálních případech jsou aktivní ionty prodlužující řetězec v rovnováze s nečinnými kovalentními částicemi, jejichž výměna je mnohem rychlejší než propagace. Při provádění polymerizace v roztoku je třeba přečišťovat monomer a rozpouštědlo, i když jsou požadavky mírnější než u aniontové polymerizace.
Nejčastějšími monomery pro živé kationtové polymerizace jsou enolethery, alfa-methylvinylethery, isobuten, styren, methylstyren a N-vinylkarbazol. Monomery jsou zde nukleofilní a substituenty by měly stabilizovat kladné náboje karbokationtů, například para-methoxystyren je reaktivnější než samotný styren.
Iniciace probíhají v binárních systémech, které může tvořit například alkohol a Lewisova kyselina. Aktivním elektrofilem je poté proton a protiiontem vznikající alkoxid, stabilizovaný Lewisovou kyselinou. Při použití organických octanů, například kumylacetátu, je iniciující částicí karbokation R+ a protiiontem octanový anion. V systému jod/jodovodík působí jako elektrofil proton a karbokation je stabilizován trijodidovým iontem. Polymerizace za přítomnosti chloridu diethylhlinitého využívají stopová množství vody a proton je zachycován protiiontem Et2AlClOH−. U terc-butylchloridu Et2AlCl odštěpuje chloridový anion za vzniku terc-butylového karbokationtu jako elektrofilu. Účinné iniciátory podobné monomerům se nazývají kationogeny. Terminace a přenos řetězce lze omezit tak, že jsou iniciátor i protiion nenukleofilní a nejsou zásadité. Polární rozpouštědla usnadňují disociace iontů a tím zvyšují molární hmotnosti produktů.
Do reakční směsi se běžně přidávají donory elektronů, soli a látky zachycující protony. Donory elektronů, například nukleofily či Lewisovy zásady, jako jsou dimethylsulfid a dimethylsulfoxid, stabilizují karbokationty. Soli, například tetraalkylamonné, zabraňují disociaci iontových párů reaktivních míst, kde dochází k propagaci řetězce; disociace na volné ionty mění polymerizaci na neživou.
Historie
Rozvoj živých kationtových polymerizací začal v 70. a 80. letech 20. století, kdy šlo o polymerizaci para-methoxystyrenu za přítomnosti jodu nebo acetylperchlorátu,[3] isobutylvinyletheru pomocí jodu [4] či systému jod/jodovodík[5] a přípravu blokových kopolymerů p-methoxystyrenu s isobutylvinyletherem.[6]
V roce 1982 byl proveden průzkum polymerizací methylstyrenu, za přítomnosti chloridu boritého,[7] a roku 1984 polymerizace isobutenu (pomocí kumylacetátu, 2,4,4-trimethylpentan-2-acetátu a BCl3).[8][9] Ve stejné době byla objevena vysoce účinná živá polymerizace isobutenu s využitím systému terciárních alkyl- či aryl-methyletherů a BCl3.[10]
↑Controlled and living polymerizations: methods and materials 2009 Krzysztof Matyjaszewski, Axel H. E. Muller
↑Possible formation of living polymers of p-methoxystyrene by iodine Higashimura, Toshinobu; Kishiro, Osamu Polymer Journal (Tokyo, Japan) (1977), 9(1), 87-93 pdf[nedostupný zdroj]
↑Studies on the nature of propagating species in cationic polymerization of isobutyl vinyl ether by iodine Ohtori, T.; Hirokawa, Y.; Higashimura, T. Polym. J. 1979, 11, 471 pdf[nedostupný zdroj]
↑Masaaki Miyamoto; Masakazu Mitsuhashi; Mitsuo Sawamoto. Synthesis of p-Methoxystyrene-Isobutyl Vinyl Ether Block Copolymers by Living Cationic Polymerization with Iodine. Macromolecules. 1979, s. 178. DOI10.1021/ma60068a003. Bibcode1979MaMol..12..178H.
↑R. Faust; A. Fehérvári; J. P. Kennedy. Quasiliving Carbocationic Polymerization. II. The Discovery: the α-Methylstyrene System. Journal of Macromolecular Science, Part A. 1982, s. 1209. DOI10.1080/00222338208077219.
↑R. Faust; J. P. Kennedy. Living carbocationic polymerization. Polymer Bulletin. 1986. DOI10.1007/BF00254850.
↑Mishra, Munmaya K.; Kennedy, Joseph P. (1987). "Living carbocationic polymerization. VII. Living Polymerization of Isobutylene by Tertiary Alkyl (or Aryl) Methyl Ether/Boron Trichloride Complexes". Journal of Macromolecular Science Part A - Chemistry 24 (8)
↑E. J. Goethals, Beatrice Verdonck; Living and controlled polymerization Joseph Jagur-Grodzinski, ed. (2005)