Sigui K un nus a la 3-esfera i sigui X el revestiment cíclic infinita del complementari de K. Aquest revestiment pot obtenir-se tallant el complementari del nus al llarg de la superfície de Seifert de K i enganxant-ne infinitament les còpies de la varietat resultant amb frontera de manera cíclica. Hi ha una transformació del revestiment t actuant en X. Considerem la primera homologia (de coeficients enters) de X, . La transformació t actua en l'homologia, per tant podem considerar un mòdul sobre . És l'anomenat invariant d'Alexander o mòdul d'Alexander.
Aquest mòdul és finitament representable. La matriu que representa el mòdul s'anomena matriu d'Alexander. Si el nombre de generadors, r, és menor o igual al nombre de relacions, s, aleshores considerem l'ideal generat per tot r per r menors de la matriu; aquest és el 0èideal de Fitting o ideal d'Alexander i no depèn de l'elecció de la representació. Si r és major que s, fixem l'ideal 0. Si l'ideal d'Alexander és principal, en prenem un generador; és el polinomi d'Alexander del nus. Com que és únic només llevat productes pel monomi de Laurent , se'n fixa com forma normalitzada la que té terme independent positiu.
Alexander va demostrar que l'ideal que porta el seu nom és diferent de zero i sempre principal. Per tant el polinomi d'Alexander sempre existeix i és clarament un invariant per nusos, que es denota com .
Definició de Conway
En 1969 el matemàtic John Conway, a partir de les relacions de Skein, trobà una definició equivalent del polinomi d'Alexander que en facilita el càlcul. Siguin L+, L- i L0 tres nusos que difereixen només en un creuament segons la següent figura:
Aleshores, el polonomi d'Alexander es pot definir a partir de les equacions
on O és el nus trivial.
Aquesta definició no només facilita el càlcul manual del polinomi, sinó que pot usar-se en computació.
Característiques
La característica principal del polinomi d'Alexander, que és la que el fa interessant i invariant de nusos, és el fet que és invariant per moviments de Reidemeister. Ara bé, no existeix una relació unívoca entre nusos i els polinomis d'Alexander (dos nusos diferents poden tenir el mateix polinomi d'Alexander, com passa amb les reflexions de mirall d'alguns nusos). És a dir, sigui K₂ un nus definit com la reflexió emmirallada d'un nus K1, i sigui el polinomi d'Alexander en t d'un nus K, en general (cosa que no passa amb altres invariants polinòmics per nusos).[1]
Una propietat directa per definició del polinomi d'Alexander és que, normalitzat per la seva variable de manera que tingui un terme de grau 0, compleix i que .[2]