En la taula periòdica dels elements, un període és una filera de la taula.[1][2] El període al qual pertany un element és definit pel nombre de capes electròniques que té. El nombre atòmic dels elements de cada període augmenta regularment d'esquerra a dreta. Elements adjacents en un període tenen massa atòmica semblant però, com que pertanyen a grups diferents, solen tenir diferent comportament químic.
Els elements químics del mateix període tenen el mateix nombre de capes electròniques. Set períodes contenen els elements observats fins a la data i s'ha descrit un hipotètic vuitè període.
L'organització de la taula en files anomenades períodes i columnes anomenades grups reflecteix la periodicitat de les propietats fisicoquímiques dels elements a mesura que augmenta el nombre atòmic. Els elements del mateix grup tenen propietats similars tot i tenir una massa atòmica diferent, mentre que els elements adjacents del mateix període tenen massa similar però propietats químiques diferents.
La mecànica quàntica explica la periodicitat de les propietats per l'ordre d'ompliment de les capes electròniques. Cada capa es divideix en subcapes plenes per ordre d'energia creixent tal com s'indica aproximadament a la figura oposada. Cada fila correspon a una capa, caracteritzada pel nombre quàntic principal d'orbitals atòmics ocupats pels electrons. Cada diagonal correspon a un valor de la suma del nombre quàntic principal i del número quàntic secundari. Comença un nou període cada vegada que es comença a omplir una subcapa. Les propietats químiques són predites pel nombre d'electrons de l'electró de valència, és a dir, la més externa de les capes plenes parcialment o totalment.
El període 1 només inclou l'hidrogen i l'heli. Tot i que tots dos pertanyen al bloc s de la taula periòdica, no tenen les mateixes propietats que els altres elements d'aquest bloc. L'hidrogen guanya fàcilment un electró i no és un metall en condicions normals de temperatura i pressió. L'heli presenta les propietats químiques d'un gas noble i, per aquest motiu, està unit al grup 18 de la taula periòdica.
El liti (Li) és el metall més lleuger i l'element sòlid menys dens.[3] En el seu estat no ionitzat, és un dels elements més reactius i, per tant, només es troba de manera natural en els compostos. És l'element primordial més pesat forjat en grans quantitats durant el big-bang.
El bor (B) no es presenta de forma natural com a element lliure, sinó en compostos com els borats. És un micronutrient vegetal essencial, necessari per a la resistència i desenvolupament de la paret cel·lular, la divisió cel·lular, el desenvolupament de llavors i fruits, el transport de sucre i el desenvolupament hormonal,[6][7] encara que els nivells elevats són tòxics.
El carboni (C) és el quart element més abundant de l'univers per massa després de l'hidrogen, l'heli i l'oxigen[8] i és el segon element més abundant del cos humà per massa després de l'oxigen,[9] el tercer més abundant per nombre d'àtoms.[10] Hi ha un nombre gairebé infinit de compostos que contenen carboni a causa de la seva capacitat per formar llargues cadenes estables d'enllaços C-C.[11][12] Tots els compostos orgànics, essencials per a la vida, contenen almenys un àtom de carboni;[11][12] combinat amb hidrogen, oxigen, nitrogen, sofre i fòsfor, el carboni és la base de tots els compostos biològics importants.[12]
El nitrogen (N) es troba principalment com a gasdiatòmic inert, N ₂, que representa el 78% de l'atmosfera terrestre en volum. És un component essencial de les proteïnes i, per tant, de la vida.
L'oxigen (O) que comprèn el 21% de l'atmosfera per volum i és necessari per a la respiració per tots (o gairebé tots) els animals, a més de ser el component principal de l'aigua. L'oxigen és el tercer element més abundant a l'univers i els compostos d'oxigen dominen l'escorça terrestre.
El fluor (F) és l'element més reactiu en el seu estat no ionitzat i, per tant, maig no es troba així a la natura
Tots els elements del període tres es produeixen a la natura i tenen almenys un isòtop estable. Tots, excepte l'argó, gas noble, són essencials per a la biologia i la geologia bàsica.
El sodi (Na) és un metall alcalí. És present als oceans de la Terra en grans quantitats en forma de clorur de sodi (sal de taula).
L'argó (Ar) és un gas noble que el fa gairebé totalment no reactiu. Les làmpades incandescents sovint s'omplen de gasos nobles com l'argó per preservar els filaments a altes temperatures.
El període 4 inclou els elements biològicament essencials potassi i calci, i és el primer període del bloc d amb els metalls de transició més lleugers. Aquests inclouen el ferro, l'element més pesat forjat en estrelles de seqüència principal i un component principal de la Terra, així com altres metalls importants com el cobalt, el níquel i el coure. Gairebé tots tenen papers biològics.
El període 5 té el mateix nombre d’elements que el període 4 i segueix la mateixa estructura general però amb un metall posterior a la transició i un altre no metàl·lic. Dels tres elements més pesats amb funcions biològiques, dos (molibdè i iode) es troben en aquest període; el tungstè, al període 6, és més pesat, juntament amb diversos dels primers lantanids. El període 5 inclou també el tecneci, l'element exclusivament radioactiu més lleuger.
El període 6 és el primer període que inclou el bloc f, amb els lantànids (també coneguts com a elements de les terres rares), i inclou els elements estables més pesats. Molts d'aquests metalls pesants són tòxics i alguns radioactius, però el platí i l’ or són en gran part inerts.
Tots els elements del període 7 són radioactius. Aquest període conté l'element més pesat que es produeix de forma natural a la Terra, el plutoni. Tots els elements posteriors del període s’han sintetitzat artificialment. Tot i que cinc d’aquestes (des de l'ameri fins a l'einsteini) ja estan disponibles en quantitats macroscòpiques, la majoria són extremadament rares, ja que només s’han preparat en quantitats de micrograms o menys. Alguns dels elements posteriors només s'han identificat en laboratoris en quantitats d'alguns àtoms alhora.
Tot i que la raresa de molts d’aquests elements significa que els resultats experimentals no són molt extensos, les tendències periòdiques i grupals en el comportament semblen estar menys ben definides durant el període 7 que en altres períodes. Tot i que el franci i el radi mostren propietats típiques dels grups 1 i 2, respectivament, els actínids presenten una varietat de comportament i estats d’oxidació molt més gran que els lantànids. Aquestes peculiaritats del període 7 es poden deure a diversos factors, inclosos un gran grau d'Acoblament de Russell-Saunders i efectes relativistes, causats en última instància per l'alta càrrega elèctrica positiva dels seus nuclis atòmics massius.
Períodes 8 i 9
El desembre de 2018, no s'havia observat cap element químic pertanyent al període 8 de la taula periòdica i la sensibilitat necessària per fer-ho encara estava fora de l'abast de les tecnologies existents. No està clar fins a quin punt els efectes relativistes organitzen els elements més enllà dels elements del període 7. L'extrapolació pel Principi d'Aufbau du a identificar un bloc g de 18 elements portant el període 8 a 50 elements:
No obstant això, nombrosos treballs que tenen en compte els efectes relativistes que afecten els electrons d'àtoms molt grans han portat a la proposta de diferents models alternatius. Per tant, una variant proposada per Fricke et al. el 1971[13] identifica els 20 elements del bloc g i situa els elements 165 i 166 al 9è període i al bloc s, continuant amb l'element 167 al bloc p en aquest mateix període:
Pekka Pyykkö va refinar aquesta proposta el 2011,[14] distribuint els 172 elements de manera no periòdica. : Els elements 139 i 140 es col·loquen així entre els elements 164 i 169 al bloc p i no al bloc g, mentre que els elements 165 a 168 es col·loquen el 9 període en blocs s i p.