En teoria de la probabilitat, una distribució de Poisson composta és la distribució de probabilitat de la suma d'un nombre de variables aleatòries independents distribuïdes de manera idèntica, on el nombre de termes que cal afegir és una variable distribuïda per Poisson. El resultat pot ser una distribució contínua o discreta.
Definició
Suposem que
és a dir, N és una variable aleatòria la distribució de la qual és una distribució de Poisson amb valor esperat λ, i això
són variables aleatòries distribuïdes de manera idèntica que són mútuament independents i també independents de N . Aleshores, la distribució de probabilitat de la suma de iid variables aleatòries
és una distribució composta de Poisson.
En el cas N=0, aquesta és una suma de 0 termes, de manera que el valor de Y és 0. Per tant, la distribució condicional de Y donat que N=0 és una distribució degenerada.
La distribució de Poisson composta s'obté marginant la distribució conjunta de (Y, N) sobre N, i aquesta distribució conjunta es pot obtenir combinant la distribució condicional Y|N amb la distribució marginal de N.
Aplicacions
Revfeim va utilitzar una distribució de Poisson composta, en la qual els sumands tenen una distribució exponencial, per modelar la distribució de la pluja total en un dia, on cada dia conté un nombre d'esdeveniments distribuïts per Poisson, cadascun dels quals proporciona una quantitat de pluja que té una distribució exponencial.[1] Thompson va aplicar el mateix model a les precipitacions totals mensuals.[2]
Hi ha hagut sol·licituds per a reclamacions d'assegurances [3][4] i tomografia computada de raigs X. [5][6][7]
Referències
- ↑ Revfeim, K. J. A. «"An initial model of the relationship between rainfall events and daily rainfalls".». Journal of Hydrology, 75, 1–4, 1984, pàg. 357–364. Bibcode: 1984JHyd...75..357R. DOI: 10.1016/0022-1694(84)90059-3.
- ↑ Thompson, C. S. «"An initial model of the relationship between rainfall events and daily rainfalls"». J. Climatology, 4, 6, 1984, pàg. 609–619. Bibcode: 1984IJCli...4..609T. DOI: 10.1002/joc.3370040605.
- ↑ Jørgensen, Bent; Paes De Souza, Marta C. «"Fitting Tweedie's compound poisson model to insurance claims data"». Scandinavian Actuarial Journal, 1994, 1, 1-1994, pàg. 69–93. DOI: 10.1080/03461238.1994.10413930.
- ↑ Smyth, Gordon K.; Jørgensen, Bent «"Fitting Tweedie's Compound Poisson Model to Insurance Claims Data: Dispersion Modelling"». ASTIN Bulletin, 32, 1, 29-08-2014, pàg. 143–157. DOI: 10.2143/AST.32.1.1020 [Consulta: lliure].
- ↑ Whiting, Bruce R. «"Signal statistics in x-ray computed tomography".». Medical Imaging 2002: Physics of Medical Imaging, 4682, 03-05-2002, pàg. 53–60. Bibcode: 2002SPIE.4682...53W. DOI: 10.1117/12.465601.
- ↑ Elbakri, Idris A.; Fessler, Jeffrey A. «"Efficient and accurate likelihood for iterative image reconstruction in x-ray computed tomography".». Medical Imaging 2003: Image Processing, 5032, 16-05-2003, pàg. 1839–1850. Bibcode: 2003SPIE.5032.1839E. DOI: 10.1117/12.480302.
- ↑ Whiting, Bruce R.; Massoumzadeh, Parinaz; Earl, Orville A.; O'Sullivan, Joseph A.; Snyder, Donald L. Medical Physics, 33, 9, 24-08-2006, pàg. 3290–3303. Bibcode: 2006MedPh..33.3290W. DOI: 10.1118/1.2230762. PMID: 17022224.